CS313H

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin
Warm ups

• How many sequences of 7 digits have at least one repeating digit?

• How many ways are there to arrange the letters in the word “SYSTEMS”?

• How many hands of 5 cards have at least 3 aces?
Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Class survey
Logistics

- Class survey
 - Don’t like 8pm quest deadline
Logistics

- Class survey
 - Don’t like 8pm quest deadline
 - Flipped class
Logistics

- Class survey
 - Don’t like 8pm quest deadline
 - Flipped class

- Modules C2 and 17 for Tuesday
Logistics

- Class survey
 - Don’t like 8pm quest deadline
 - Flipped class

- Modules C2 and 17 for Tuesday

- Homework 6 due Thursday (+ Module 18)
Logistics

- Class survey
 - Don’t like 8pm quest deadline
 - Flipped class

- Modules C2 and 17 for Tuesday

- Homework 6 due Thursday (+ Module 18)
 - Homework 7 due following Tuesday
Logistics

• Class survey
 – Don’t like 8pm quest deadline
 – Flipped class

• Modules C2 and 17 for Tuesday

• Homework 6 due Thursday (+ Module 18)
 – Homework 7 due following Tuesday

• Midterm on graph theory, counting, recurrences following Thursday
Important counting concepts

- Addition rule
- Inclusion/exclusion principle
- Correspondence principle
- Product rule

- Number of subsets of an \(n \) element set: \(2^n \)
- Number of permutations of \(n \) distinct objects: \(n! \)
- Number of subsets of size \(k \) from an \(n \)-element set: \(\binom{n}{k} \) ("n choose k") = \(\frac{n!}{k!(n-k)!} \)
Counting trees and graphs

- How many trees with 4 nodes?
 - unlabeled vs. labeled
Counting trees and graphs

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16
Counting trees and graphs

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16

- How many labeled graphs on \(n \) nodes?
Counting trees and graphs

• How many trees with 4 nodes?
 – unlabeled vs. labeled
 – 2, 16

• How many labeled graphs on n nodes?
 – $2^{\binom{n}{2}}$
Counting trees and graphs

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16

- How many labeled graphs on n nodes?
 - $2^{n \choose 2}$

- How many labeled trees on n nodes?
Counting trees and graphs

- How many trees with 4 nodes?
 - unlabeled vs. labeled
 - 2, 16

- How many labeled graphs on n nodes?
 - $2^{\binom{n}{2}}$

- How many labeled trees on n nodes?
 - n^{n-2}
Counting trees and graphs

• How many trees with 4 nodes?
 – unlabeled vs. labeled
 – 2, 16

• How many labeled graphs on n nodes?
 – $2^\binom{n}{2}$

• How many labeled trees on n nodes?
 – n^{n-2}
Warm ups

• How many sequences of 7 digits have at least one repeating digit?

• How many ways are there to arrange the letters in the word “SYSTEMS”?

• How many hands of 5 cards have at least 3 aces?
Counting Poker Hands

• Each card has 13 possible ranks
Counting Poker Hands

- Each card has 13 possible ranks
- AND 4 possible suits
Counting Poker Hands

- Each card has 13 possible ranks
- AND 4 possible suits
- A straight is a sequence of 5 cards of consecutive rank
Counting Poker Hands

- Each card has 13 possible ranks
- AND 4 possible suits

- a **straight** is a sequence of 5 cards of consecutive rank
- a **flush** is a set of 5 cards with the same suit
Counting Poker Hands

- Each card has 13 possible ranks
- AND 4 possible suits

- a **straight** is a sequence of 5 cards of consecutive rank
- a **flush** is a set of 5 cards with the same suit

- How many hands total?
Counting Poker Hands

- Each card has 13 possible ranks
- AND 4 possible suits

- a **straight** is a sequence of 5 cards of consecutive rank
- a **flush** is a set of 5 cards with the same suit

- How many hands total? \(\binom{52}{5} = 2,598,960 \)
How many? What are the odds?

Straight flush: straight and a flush

4 of a kind: 4 cards of the same rank

Full house: 3 cards of one rank, two of another

Flush: a flush but *not* a straight

Straight: a straight but *not* a flush

3 of a kind: 3 cards of one rank, but not full house or 4 of a kind

2 pair: 2 cards of one rank, 2 of another rank, but *not* 4 of a kind or full house

Pair: 2 cards of one rank, but not anything higher
How many? What are the odds?

Straight flush:
How many? What are the odds?

Straight flush: \[
\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193
\]
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind:
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165 \)
How many? What are the odds?

Straight flush: \[\frac{36}{2,598,960} = 0.0000138 \approx 1 \text{ in } 72,193 \]

4 of a kind: \[\frac{624}{2,598,960} = 0.00024 = 1 \text{ in } 4165 \]

full house:
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 \approx 1 \text{ in } 4165 \)

Full house: \(\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694 \)
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = 0.000138 \approx \frac{1}{72,193} \)

4 of a kind: \(\frac{624}{2,598,960} = 0.00024 = \frac{1}{4165} \)

full house: \(\frac{3744}{2,598,960} = 0.00144 \approx \frac{1}{694} \)

flush:
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = 0.0000138 \approx 1 \text{ in 72,193} \)

4 of a kind: \(\frac{624}{2,598,960} = 0.00024 = 1 \text{ in 4165} \)

Full house: \(\frac{3744}{2,598,960} = 0.00144 \approx 1 \text{ in 694} \)

Flush: \(\frac{5112}{2,598,960} = 0.0019669 \approx 1 \text{ in 508} \)
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165 \)

Full house: \(\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694 \)

Flush: \(\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508 \)
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165 \)

Full house: \(\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694 \)

Flush: \(\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508 \)

Straight: \(\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283 \)
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 \approx 1 \text{ in } 4165 \)

Full house: \(\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694 \)

Flush: \(\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508 \)

Straight: \(\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283 \)

3 of a kind:
How many? What are the odds?

Straight flush: \[
\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193
\]

4 of a kind: \[
\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165
\]

Full house: \[
\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694
\]

Flush: \[
\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508
\]

Straight: \[
\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283
\]

3 of a kind: \[
\frac{54,912}{2,598,960} = .0211 \approx 1 \text{ in } 47
\]
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165 \)

full house: \(\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694 \)

flush: \(\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508 \)

straight: \(\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283 \)

3 of a kind: \(\frac{54,912}{2,598,960} = .0211 \approx 1 \text{ in } 47 \)

2 pair:
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165 \)

Full house: \(\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694 \)

Flush: \(\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508 \)

Straight: \(\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283 \)

3 of a kind: \(\frac{54,912}{2,598,960} = .0211 \approx 1 \text{ in } 47 \)

2 pair: \(\frac{123,552}{2,598,960} = .0475 \approx 1 \text{ in } 21 \)
How many? What are the odds?

Straight flush: \[\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193\]

4 of a kind: \[\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165\]

full house: \[\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694\]

flush: \[\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508\]

straight: \[\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283\]

3 of a kind: \[\frac{54,912}{2,598,960} = .0211 \approx 1 \text{ in } 47\]

2 pair: \[\frac{123,552}{2,598,960} = .0475 \approx 1 \text{ in } 21\]
How many? What are the odds?

Straight flush: \(\frac{36}{2,598,960} = .0000138 \approx 1 \text{ in } 72,193 \)

4 of a kind: \(\frac{624}{2,598,960} = .00024 = 1 \text{ in } 4165 \)

Full house: \(\frac{3744}{2,598,960} = .00144 \approx 1 \text{ in } 694 \)

Flush: \(\frac{5112}{2,598,960} = .0019669 \approx 1 \text{ in } 508 \)

Straight: \(\frac{9180}{2,598,960} = .00353 \approx 1 \text{ in } 283 \)

3 of a kind: \(\frac{54,912}{2,598,960} = .0211 \approx 1 \text{ in } 47 \)

2 pair: \(\frac{123,552}{2,598,960} = .0475 \approx 1 \text{ in } 21 \)

Pair: \(\frac{1,098,240}{2,598,960} = .4225 \approx 1 \text{ in } 2.4 \)