Recurrences

- In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?
Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Midterm on graph theory, counting, recurrences next Thursday
Logistics

- Midterm on graph theory, counting, recurrences next Thursday
 - Like last time: hand-written notes allowed. No book or electronic devices.
Logistics

- Midterm on graph theory, counting, recurrences next Thursday
 - Like last time: hand-written notes allowed. No book or electronic devices.
 - Tuesday and Wednesday devoted to review.
Quiz

• If the class has 60 students, how many ways can I divide the class in half?

• If I have 100 Snickers bars, in how many ways can I divide them up among the students in that class?

• In the same class, if 10 of the students are named “Will,” 15 are named “William,” 5 are named “Bill” and the rest have unique names, how many ways can I write the class members’ (first) names in order?

• According to Pascal’s identity, what is \(\binom{35}{12} + \binom{35}{13} \)?
Recurrences

- Find closed form solution for
 \[a_0 = 4, \ a_1 = 3, \ \text{and} \ a_n = 3a_{n-1} + 4a_{n-2}. \]
Recurrences

● Find closed form solution for
 \[a_0 = 4, \ a_1 = 3, \text{ and } a_n = 3a_{n-1} + 4a_{n-2}. \]

● Find closed form solution for
 \[a_0 = 5, \ a_1 = 2, \text{ and } a_n = -10a_{n-1} - 25a_{n-2}. \]
A Generalization

• Find closed form solution for

\[T_0 = 1, \ T_1 = 1, \ T_2 = 2, \text{ and } T_n = -2T_{n-1} + T_{n-2} + 2T_{n-3} \]
A Generalization

- Find closed form solution for
 \[T_0 = 1, \ T_1 = 1, \ T_2 = 2, \text{ and } T_n = -2T_{n-1} + T_{n-2} + 2T_{n-3} \]

The characteristic polynomial is:
\[r^3 + 2r^2 - r - 2 = (r + 1)(r - 1)(r + 2) \]
A Generalization

- Find closed form solution for
 \[T_0 = 1, \quad T_1 = 1, \quad T_2 = 2, \quad \text{and} \quad T_n = -2T_{n-1} + T_{n-2} + 2T_{n-3} \]

 The characteristic polynomial is:
 \[r^3 + 2r^2 - r - 2 = (r + 1)(r - 1)(r + 2) \]
 So the roots are \(r_1 = -1, \quad r_2 = 1, \quad r_3 = -2 \)
A Generalization

- Find closed form solution for
 \[T_0 = 1, \ T_1 = 1, \ T_2 = 2, \text{ and } T_n = -2T_{n-1} + T_{n-2} + 2T_{n-3} \]

The characteristic polynomial is:
\[r^3 + 2r^2 - r - 2 = (r + 1)(r - 1)(r + 2) \]
So the roots are \(r_1 = -1, \ r_2 = 1, \ r_3 = -2 \)
Solution form is:
\[T_n = \alpha(-1)^n + \beta(1)^n + \gamma(-2)^n = \alpha(-1)^n + \beta + \gamma(-2)^n \]
A Generalization

- Find closed form solution for
 \[T_0 = 1, \ T_1 = 1, \ T_2 = 2, \text{ and } T_n = -2T_{n-1} + T_{n-2} + 2T_{n-3} \]

The characteristic polynomial is:
\[r^3 + 2r^2 - r - 2 = (r + 1)(r - 1)(r + 2) \]
So the roots are \(r_1 = -1, r_2 = 1, r_3 = -2 \)
Solution form is:
\[T_n = a(-1)^n + b(1)^n + c(-2)^n = a(-1)^n + b + c(-2)^n \]
Solving for initial conditions, the final recurrence is:
\[T_n = -(3/6)(-1)^n + (7/6) + (1/3)(-2)^n \]
Recurrences

• In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?
Recurrences

• In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?

• $t_n = t_{n-1} + 2t_{n-2}$
Recurrences

• In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?

• $t_n = t_{n-1} + 2t_{n-2}$

• $t_1 = 1, t_2 = 3$
Recurrences

- In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?

- $t_n = t_{n-1} + 2t_{n-2}$

- $t_1 = 1$, $t_2 = 3$

- $r^2 - r - 2 = 0 \Rightarrow r = 2 \land r = -1$
Recurrences

• In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?

• $t_n = t_{n-1} + 2t_{n-2}$

• $t_1 = 1, t_2 = 3$

• $r^2 - r - 2 = 0 \Rightarrow r = 2 \land r = -1$

• $\frac{2^{n+1}}{3} + \frac{(-1)^n}{3}$
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?
An Application

• Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years.
An Application

• Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years. Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years. Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Initial condition is $P_0 = 10,000$
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years. Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Initial condition is $P_0 = 10,000$

$$P_1 = 1.05P_0$$
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years.

Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Initial condition is $P_0 = 10,000$

$P_1 = 1.05P_0$

$P_2 = 1.05P_1 = (1.05)^2P_0$
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years. Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Initial condition is $P_0 = 10,000$

$$P_1 = 1.05P_0$$

$P_2 = 1.05P_1 = (1.05)^2P_0$

$$P_3 = 1.05P_2 = (1.05)^3P_0$$
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years. Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Initial condition is $P_0 = 10,000$

$$P_1 = 1.05P_0$$
$$P_2 = 1.05P_1 = (1.05)P_0$$
$$P_3 = 1.05P_2 = (1.05)^2P_0$$

$$\ldots P_n = 1.05P_{n-1} = (1.05)^nP_0$$
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years. Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Initial condition is $P_0 = 10,000$

$P_1 = 1.05P_0$

$P_2 = 1.05P_1 = (1.05)^2P_0$

$P_3 = 1.05P_2 = (1.05)^3P_0$

... $P_n = 1.05P_{n-1} = (1.05)^nP_0$

We can now find P_{30} under initial condition $P_0 = 10,000$.
An Application

- Someone deposits $10,000 in a savings account at a bank yielding 5% per year with interest being compounded annually. How much money will be in the account after 30 years?

Let P_n denote the amount in the account after n years. Then, the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Initial condition is $P_0 = 10,000$

$$P_1 = 1.05P_0$$ \hspace{1cm} P_2 = 1.05P_1 = (1.05)^2P_0$$

$$P_3 = 1.05P_2 = (1.05)^3P_0$$ \hspace{1cm} \ldots \hspace{1cm} P_n = 1.05P_{n-1} = (1.05)^nP_0$$

We can now find P_{30} under initial condition $P_0 = 10,000$.

$$P_{30} = (1.05)^{30}10,000 = 43,219.42$$
More Difficult

• Let $ABCDEFGH$ be a regular octagon of side length 1, and O be the center of the octagon. In addition to the sides of the octagon, line segments are drawn from O to each vertex, making a total of 16 line segments. Let a_n be the number of paths (not necessarily necessarily simple) of length n along these line segments that start at O and terminate at O. Give a closed form solution of a_n.
More Difficult

- Let $ABCDEFGH$ be a regular octagon of side length 1, and O be the center of the octagon. In addition to the sides of the octagon, line segments are drawn from O to each vertex, making a total of 16 line segments. Let a_n be the number of paths (not necessarily necessarily simple) of length n along these line segments that start at O and terminate at O. Give a closed form solution of a_n.
Solution

Let b_n be the number of paths of length n that start at O and terminate at A (b_n also works for $BCDEFGH$). Since for the first step, we need move to one of the 8 vertices. Then we get the recurrence relationship that

$$a_n = 8b_{n-1}$$

For b_n, consider the last step, it can be from its two adjacent vertices or from the center O. Thus we have

$$b_n = 2b_{n-1} + a_{n-1}$$
Substituting b_n by $a_{n+1}/8$ we get

$$a_{n+1} - 2a_n - 8a_{n-1} = 0$$

For initial condition, we have $a_0 = 1$ and $a_1 = 0$. The characteristic polynomial is

$$x^2 - 2x - 8$$

which has roots of $x = 4$ and $x = -2$. Thus the solution of the homogeneous recurrence relationship is in form

$$a_n = \alpha(4)^n + \beta(-2)^n$$
Using initial condition, we have

\[
\begin{align*}
a_0 &= 1 = \alpha + \beta \\
a_1 &= 0 = (4)\alpha + (-2)\beta
\end{align*}
\]

Thus we have and \(\alpha = \frac{1}{3} \) and \(\beta = \frac{2}{3} \) and the close form solution is

\[
a_n = \frac{1}{3}4^n + \frac{2}{3}(-2)^n
\]