An Introductory Challenge Question

- Last night, my wife and I had a dinner party.
An Introductory Challenge Question

- Last night, my wife and I had a dinner party.
- We invited over 3 other couples (⇒ 8 people total).
An Introductory Challenge Question

- Last night, my wife and I had a dinner party.
- We invited over 3 other couples (⇒ 8 people total).
- When they arrived, we all started introducing ourselves and shaking hands.
An Introductory Challenge Question

- Last night, my wife and I had a dinner party.
- We invited over 3 other couples (⇒ 8 people total).
- When they arrived, we all started introducing ourselves and shaking hands.
- Nobody shook his/her spouse’s hand (nor his/her own hand).
An Introductory Challenge Question

- Last night, my wife and I had a dinner party.
- We invited over 3 other couples (⇒ 8 people total).
- When they arrived, we all started introducing ourselves and shaking hands.
- Nobody shook his/her spouse’s hand (nor his/her own hand).
- After a few minutes, I interrupted the introductions and asked everyone else how many hands they had shaken.
An Introductory Challenge Question

- Last night, my wife and I had a dinner party.
- We invited over 3 other couples (⇒ 8 people total).
- When they arrived, we all started introducing ourselves and shaking hands.
- Nobody shook his/her spouse’s hand (nor his/her own hand).
- After a few minutes, I interrupted the introductions and asked everyone else how many hands they had shaken.
- Each person answered (truthfully) with a different number
An Introductory Challenge Question

• Last night, my wife and I had a dinner party.
• We invited over 3 other couples (⇒ 8 people total).
• When they arrived, we all started introducing ourselves and shaking hands.
• Nobody shook his/her spouse’s hand (nor his/her own hand).
• After a few minutes, I interrupted the introductions and asked everyone else how many hands they had shaken.
• Each person answered (truthfully) with a different number

How many hands did my wife shake?
How many hands did my wife shake?

• If you’ve seen this problem before, raise your hand (please, no spoiling)
How many hands did my wife shake?

- If you’ve seen this problem before, raise your hand (please, no spoiling)
- Think about it, then work with a neighbor or two
How many hands did my wife shake?

- If you’ve seen this problem before, raise your hand (please, no spoiling)
- Think about it, then work with a neighbor or two
- I’m looking for a proof that your answer is correct
A proof

- Each person shook 0–6 hands.
A proof

- Each person shook 0–6 hands.
- For every $0 \leq n \leq 6$, 1 person shook n hands.
A proof

- Each person shook 0–6 hands.
- For every $0 \leq n \leq 6$, 1 person shook n hands.
- Someone shook 6 hands (call him/her $p6$).
A proof

- Each person shook 0–6 hands.
- For every $0 \leq n \leq 6$, 1 person shook n hands.
- Someone shook 6 hands (call him/her p_6).
- Someone shook 0 hands (call him/her p_0).
A proof

- Each person shook 0–6 hands.
- For every $0 \leq n \leq 6$, 1 person shook n hands.
- Someone shook 6 hands (call him/her p_6).
- Someone shook 0 hands (call him/her p_0).
- p_6 is married to p_0.
A proof

• Each person shook 0–6 hands.
• For every $0 \leq n \leq 6$, 1 person shook n hands.
• Someone shook 6 hands (call him/her p_6).
• Someone shook 0 hands (call him/her p_0).
• p_6 is married to p_0.
• Similarly p_5 is married to p_1 and p_4 is married to p_2.
A proof

- Each person shook 0–6 hands.
- For every \(0 \leq n \leq 6\), 1 person shook \(n\) hands.
- Someone shook 6 hands (call him/her \(p_6\)).
- Someone shook 0 hands (call him/her \(p_0\)).
- \(p_6\) is married to \(p_0\).
- Similarly \(p_5\) is married to \(p_1\) and \(p_4\) is married to \(p_2\).
- \(p_3\)'s spouse also shook 3 hands.
A proof

- Each person shook 0–6 hands.
- For every $0 \leq n \leq 6$, 1 person shook n hands.
- Someone shook 6 hands (call him/her p_6).
- Someone shook 0 hands (call him/her p_0).
- p_6 is married to p_0.
- Similarly p_5 is married to p_1 and p_4 is married to p_2.
- p_3’s spouse also shook 3 hands.
- 2 married people shook 3 hands each.
A proof

- Each person shook 0–6 hands.
- For every $0 \leq n \leq 6$, 1 person shook n hands.
- Someone shook 6 hands (call him/her p_6).
- Someone shook 0 hands (call him/her p_0).
- p_6 is married to p_0.
- Similarly p_5 is married to p_1 and p_4 is married to p_2.
- p_3’s spouse also shook 3 hands.
- 2 married people shook 3 hands each.
- Since I got different responses from everyone, I must be one of them, and my wife must be the other.
A proof

• Each person shook 0–6 hands.
• For every $0 \leq n \leq 6$, 1 person shook n hands.
• Someone shook 6 hands (call him/her p_6).
• Someone shook 0 hands (call him/her p_0).
• p_6 is married to p_0.
• Similarly p_5 is married to p_1 and p_4 is married to p_2.
• p_3’s spouse also shook 3 hands.
• 2 married people shook 3 hands each.
• Since I got different responses from everyone, I must be one of them, and my wife must be the other.

\[\therefore \text{My wife shook 3 hands.}\]
In theory, there’s no difference between theory and practice.
In theory, there’s no difference between theory and practice. But in practice, there is.
Theory in Practice

In theory, there’s no difference between theory and practice. But in practice, there is.

A use of theory in my research: RoboCup soccer
Good Afternoon, Colleagues

Welcome to a fun, but challenging course.
Good Afternoon, Colleagues

Welcome to a fun, but challenging course.

Goal

- Learn about and appreciate CS Theory (discrete math)
Good Afternoon, Colleagues

Welcome to a fun, but challenging course.

Goal

- Learn about and appreciate CS Theory (discrete math)
 - For students who appreciate mathematical elegance
Good Afternoon, Colleagues

Welcome to a fun, but challenging course.

Goal

- Learn about and appreciate **CS Theory** (discrete math)
 - For students who appreciate mathematical elegance
 - For students who focus more on applications
Good Afternoon, Colleagues

Welcome to a fun, but challenging course.

Goal

• Learn about and appreciate **CS Theory** (discrete math)
 – For students who appreciate mathematical elegance
 – For students who focus more on applications

• Make sure you’re comfortable with rigorous proofs
A Walk through the Syllabus

Official syllabus is on-line
Workload Summary

- Pre-class learning (video modules and/or reading)
Workload Summary

- Pre-class learning (video modules and/or reading)
- Pre-class questions 10%
Workload Summary

- Pre-class learning (video modules and/or reading)
- Pre-class questions 10%
- Class participation 10%
Workload Summary

- Pre-class learning (video modules and/or reading)
- Pre-class questions 10%
- Class participation 10%
- Homework Assignments (written) 20%
Workload Summary

- Pre-class learning (video modules and/or reading)
- Pre-class questions 10%
- Class participation 10%
- Homework Assignments (written) 20%
- 2 Midterms 30%
Workload Summary

- Pre-class learning (video modules and/or reading)
- Pre-class questions 10%
- Class participation 10%
- Homework Assignments (written) 20%
- 2 Midterms 30%
- Final 30%
Assignments for Tuesday

- Read the syllabus
Assignments for Tuesday

• Read the syllabus

• Join Piazza
Assignments for Tuesday

• Read the syllabus
• Join Piazza
• Post something on Piazza
Assignments for Tuesday

- Read the syllabus
- Join Piazza
- Post something on Piazza
- First 2 modules with associated readings
Assignments for Tuesday

- Read the syllabus
- Join Piazza
- Post something on Piazza
- First 2 modules with associated readings
- Look at first HW assignment (requires module 3 to complete)