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e \OTe!

e Midterrn on graph theory, counting, recurrences on
Thursday

— Like last time: hand-written notes allowed. No book or
electronic devices.

— Today and Wednesday devoted 1o review.
e Modules assigned for next week.

e Wed. before Thanksgiving?
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e Prove for any connected planar bipartfite graph
with V| > 3, | < 2|V| —4
Proof: Note that bibartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is N0 more
than twice the number of edges:
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By Euler’s Formula we can write in terms of |E|, [V |:
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Graph Theory

e Prove for any connected planar bipartfite graph
with V| > 3, | < 2|V| —4
Proof: Note that bibartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is N0 more
than twice the number of edges:

4|R| < 2|F)
By Euler’s Formula we can write in terms of |E|, [V |:
A(E]+2—|V]) < 2[E]

Simplifying the inequality we have |E| < 2|V| — 4.
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Graph Theory

e Prove for any connected planar bipartfite graph
with V| > 3, | < 2|V| —4
Proof: Note that bibartite graphs have no odd length
cycles, so each (enclosed) region has at least 4 edges.
Since the sum of the degrees of the regions is N0 more
than twice the number of edges:

4|R| < 2|F)
By Euler’s Formula we can write in terms of |E|, [V |:
A(E]+2—|V]) < 2[E]

Simplifying the inequality we have |E| < 2|V| — 4. QED.
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— BWOC assume vertex v is removed from G fo get G*, and
X(G) =k, but X(G") <= k-2.

— Validly color G’ using k-2 colors.
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Chromatic Number

e Removing one vertex from a graph can never decrease
the chromatic numlber by more than one.

— BWOC assume vertex v is removed from G fo get G*, and
X(G) =k, but X(G") <= k-2.

— Validly color G” using k-2 colors.

— Put vand its edges back in G" fo get G.

— V’'s neighbors have at most k-2 distinct colors.
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Chromatic Number

e Removing one vertex from a graph can never decrease
the chromatic numlber by more than one.

— BWOC assume vertex v is removed from G fo get G*, and
X(G) =k, but X(G") <= k-2.

— Validly color G” using k-2 colors.

— Put vand its edges back in G" fo get G.

— V’'s neighbors have at most k-2 distinct colors.

— V can be give a new color, which means X(G) <= k-1,
contradiction.
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Counting

e fake two decks of cards and mix them. How many ways
can the 104 cards be arranged?

e HOW Mmany ways to choose a dozen donuts If there are 4
types?
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Harder Counting

e HOw many ways to place 20 identical bballs in 4 bins if each
bin Must have an even number of balls?

e HOW many ways are there to place 35 students into 7
groups of 57?7
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Counting Functions

e HOw many surjective (onto) functions are there from 6
elements to 3 elements?

— Hint: reason by inclusion/exclusion

— 3% total functions

— Subfract non-surjective functions

- 30— (;)2°

— Functions with only one element in range subfracted
twice

30— ((3)2° - (3)) =540

Peter Stone
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Binomial Coefficients

e Why does n2"~+ =57, k(})?

e Consider picking a commiftfee and then a leader.

e Left equation: pick a leader first from n, then there are
27—l possible subsets of other people.

e Right equation: consider how many committees of size k

there are from k£ = 1 tOo n. For each of these, there are k
possible leaders.

Peter Stone
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Soccer Balls

e The surface of a soccer ball is a planar graph satisfying

the following two conditions: (1) Each vertex

NAs degree

3. (2) There are only two kinds of regions: pentagons and
hexagons. There are 20 hexagons. Figure out the number

of pentagons.

e SUppose that a planar graph with E edges and V vertices

contains no simple circuits of length 4 or less.

ShowThoTEg%V—%OifvzzL

Peter Stone



Soccer Balls
Answer: Assume there are x pentagons.

Peter Stone



Soccer Balls

Answer: Assume there are x pentagons. Since each vertex
Is shared by 3 regions, we have

_5:1:+120
N 3

U

Peter Stone



Soccer Balls

Answer: Assume there are x pentagons. Since each vertex
Is shared by 3 regions, we have

_5:1:+120
N 3

U

And each edge is shared by 2 regions, we have

_5x+120
- 2

€
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Soccer Balls

Answer: Assume there are x pentagons. Since each vertex
Is shared by 3 regions, we have

_5:1:+120
N 3

U

And each edge is shared by 2 regions, we have

_5x+120
- 2

€

By Euler’s Formula we have

5z + 120 5z 4 120
3 B 2

xr + 20+ + 2

Thus we have =z = 12. SO we have 12 penfagons.
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