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Logistics

e Midterm was difficult and a bit foo long

— Acts as a separator — will aim for final to be roughly
same difficulty, but not as fime-pressured
— Don’t despair about grades

e Unfil Thanksgiving: Big O and Master Theorem

— This week may have been review — consider it vacation
after exam

e Class Tuesday next week important

e NoO discussion Wed. before Thanksgiving
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Important Points

e How does O,02,0 relate 1o limits?

e f(x)being of “order” g(x) is a way of saying f(x) is ©(g(x))
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Prove (and find C and K)

e f(N) =4Nn? -5n + 3 is O(N?).

o f(N) = (N + 5)log,(3n? + 7) is O(n logsn).

z?+1)/(x+1)is O(x).

et K =1.

Forx > K, |(22+1)/(z+1)| = (z*+1)/(x + 1).

(1) (x+1) < (z?+1)/x

. < (2*+x2%)/x {because z > 1}
= 22°/x
= 2T
= 2|z|

ThereforeC_Qonde>K (2 +1)/(z+1)] < Clz|.

NN WN —
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Not big-O

e Show that n? is not O(7n?)

Proof by Confradiction:

Suppose N3 is O(7Nn?)

Then there are C and k such that

N3 < Cn?, VYn>k

But n? < C'tn? implies that n < 7C

But this fails for values of n that are greater than 7C. So we
have a confradiction.
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O(h(x)).
1. f(x)is O(g(x)) = Vo > Ki|f(x)| < Cilg(x)| for some

Klacl'
2. g(x)is O(h(x)) = Vax > Kslg(x)] < Cslh(x)| for some

KQ,CQ.
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General Facts

e SUppose f(xz) is O(g(x)) and g(x) is O(h(x)). Prove f(x) is
O(h(x)).
1. f(x)is O(g(x)) = Ve > Ki|f(x)] < Ci|g(x)| for some
Kl,C’l.
2. g(x)is O(h(x)) = Vax > Kslg(x)] < Cslh(x)| for some
KQ,OQ.
3. Let K = max(K,, K;) and C = C1C%s.
4. Then Vo > K| f(x)| < Cilg(z)| < Ci(Ca|h(z)]) = Clh(z)].
5. Therefore f(x) is O(h(x)).

e Proveif f(x)is O(g(x)), then g(x)is Q(f(x))

— (Try on piazza)
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Oscillating Functions

e Consider f(n) = n(sin n)

e Show that f(n) is O(n).

o Is f(n) Q2(n)?

e Show that f(n) is Q(sin n).

o IS f(n) O(siN n)?

e Show that f(n) is neither O(1) nor (1)

e Find a function g(n) such that f(n) is O(g(n)).
— g(n) = n(sin n)
— Every function is © of itself!
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