Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Midterm was difficult and a bit too long
Logistics

- Midterm was difficult and a bit too long
 - Acts as a separator — will aim for final to be roughly same difficulty, but not as time-pressured
Logistics

- Midterm was difficult and a bit too long
 - Acts as a separator — will aim for final to be roughly same difficulty, but not as time-pressured
 - Don’t despair about grades
Logistics

- Midterm was difficult and a bit too long
 - Acts as a separator — will aim for final to be roughly same difficulty, but not as time-pressured
 - Don’t despair about grades

- Until Thanksgiving: Big O and Master Theorem
Logistics

• Midterm was difficult and a bit too long
 – Acts as a separator — will aim for final to be roughly same difficulty, but not as time-pressured
 – Don’t despair about grades

• Until Thanksgiving: Big O and Master Theorem
 – This week may have been review – consider it vacation after exam
Logistics

• Midterm was difficult and a bit too long
 – Acts as a separator — will aim for final to be roughly same difficulty, but not as time-pressured
 – Don’t despair about grades

• Until Thanksgiving: Big O and Master Theorem
 – This week may have been review – consider it vacation after exam

• Class Tuesday next week important
Logistics

- Midterm was difficult and a bit too long
 - Acts as a separator — will aim for final to be roughly same difficulty, but not as time-pressured
 - Don’t despair about grades

- Until Thanksgiving: Big O and Master Theorem
 - This week may have been review — consider it vacation after exam

- Class Tuesday next week important

- No discussion Wed. before Thanksgiving
Important Points

- How does O, Ω, Θ relate to limits?
- $f(x)$ being of “order” $g(x)$ is a way of saying $f(x)$ is $\Theta(g(x))$
Prove (and find C and K)

- $f(n) = 4n^2 - 5n + 3$ is $O(n^2)$.
Prove (and find C and K)

- $f(n) = 4n^2 - 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.
Prove (and find C and K)

• $f(n) = 4n^2 - 5n + 3$ is $O(n^2)$.

• $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

• $(x^2 + 1)/(x + 1)$ is $O(x)$.
Prove (and find C and K)

- $f(n) = 4n^2 - 5n + 3$ is $O(n^2)$.

- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

- $(x^2 + 1)/(x + 1)$ is $O(x)$.
 1. Let $K = 1$.

Peter Stone
Prove (and find C and K)

- $f(n) = 4n^2 - 5n + 3$ is $O(n^2)$.
- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.
- $(x^2 + 1)/(x + 1)$ is $O(x)$.
 1. Let $K = 1$.
 2. For $x > K$, $|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)$.

Peter Stone
Prove (and find C and K)

- \(f(n) = 4n^2 - 5n + 3 \) is \(O(n^2) \).

- \(f(n) = (n + 5)\log_2(3n^2 + 7) \) is \(O(n \log_2 n) \).

- \(\frac{x^2 + 1}{x + 1} \) is \(O(x) \).
 1. Let \(K = 1 \).
 2. For \(x > K \), \(|\frac{x^2 + 1}{x + 1}| = \frac{x^2 + 1}{x + 1} \).
 3. \(\frac{x^2 + 1}{x + 1} < \frac{x^2 + 1}{x} \)
Prove (and find C and K)

- $f(n) = 4n^2 - 5n + 3$ is $O(n^2)$.

- $f(n) = (n + 5)\log_2(3n^2 + 7)$ is $O(n \log_2 n)$.

- $\frac{x^2 + 1}{x + 1}$ is $O(x)$.
 1. Let $K = 1$.
 2. For $x > K$, $|\frac{x^2 + 1}{x + 1}| = \frac{x^2 + 1}{x + 1}$.
 3. $\frac{x^2 + 1}{x + 1} < \frac{x^2 + 1}{x}$
 4. $< \frac{x^2 + x^2}{x}$
Prove (and find C and K)

- \(f(n) = 4n^2 - 5n + 3 \) is \(O(n^2) \).

- \(f(n) = (n + 5)\log_2(3n^2 + 7) \) is \(O(n \log_2 n) \).

- \(\frac{x^2 + 1}{x + 1} \) is \(O(x) \).
 1. Let \(K = 1 \).
 2. For \(x > K \), \(|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1) \).
 3. \((x^2 + 1)/(x + 1) < (x^2 + 1)/x \)
 4. \(< (x^2 + x^2)/x \) \{because \(x > 1 \}\)
Prove (and find C and K)

- \(f(n) = 4n^2 - 5n + 3 \) is \(O(n^2) \).

- \(f(n) = (n + 5)\log_2(3n^2 + 7) \) is \(O(n \log_2 n) \).

- \(\frac{x^2 + 1}{x + 1} \) is \(O(x) \).
 1. Let \(K = 1 \).
 2. For \(x > K \), \(|\frac{x^2 + 1}{x + 1}| = \frac{x^2 + 1}{x + 1} \).
 3. \(\frac{x^2 + 1}{x + 1} < \frac{x^2 + 1}{x} \)
 4. \(\quad < \frac{x^2 + x^2}{x} \) \quad \{\text{because } x > 1\}
 5. \(\quad = \frac{2x^2}{x} \)
Prove (and find C and K)

• \(f(n) = 4n^2 - 5n + 3 \) is \(O(n^2) \).

• \(f(n) = (n + 5)\log_2(3n^2 + 7) \) is \(O(n \log_2 n) \).

• \(\frac{x^2 + 1}{x + 1} \) is \(O(x) \).
 1. Let \(K = 1 \).
 2. For \(x > K \), \(|\frac{x^2 + 1}{x + 1}| = \frac{x^2 + 1}{x + 1} \).
 3. \(\frac{x^2 + 1}{x + 1} < \frac{x^2 + 1}{x} \)
 4. \(< \frac{x^2 + x^2}{x} \) \{because \(x > 1 \}\)
 5. \(= 2x^2/x \)
 6. \(= 2x \)
Prove (and find C and K)

- \(f(n) = 4n^2 - 5n + 3 \) is \(O(n^2) \).

- \(f(n) = (n + 5)\log_2(3n^2 + 7) \) is \(O(n \log_2 n) \).

- \(\frac{x^2 + 1}{x + 1} \) is \(O(x) \).
 1. Let \(K = 1 \).
 2. For \(x > K \), \(|\frac{x^2 + 1}{x + 1}| = \frac{x^2 + 1}{x + 1} \).
 3. \(\frac{x^2 + 1}{x + 1} < \frac{x^2 + 1}{x} \)
 4. \(< \frac{x^2 + x^2}{x} \) \{because \(x > 1 \}\}
 5. \(= \frac{2x^2}{x} \)
 6. \(= 2x \)
 7. \(= 2|x| \)
Prove (and find C and K)

• \(f(n) = 4n^2 - 5n + 3 \) is \(O(n^2) \).

• \(f(n) = (n + 5)\log_2(3n^2 + 7) \) is \(O(n \log_2 n) \).

• \(\frac{x^2 + 1}{x + 1} \) is \(O(x) \).
 1. Let \(K = 1 \).
 2. For \(x > K \), \(|(x^2 + 1)/(x + 1)| = (x^2 + 1)/(x + 1)\).
 3. \((x^2 + 1)/(x + 1) < (x^2 + 1)/x \)
 4. \(\quad < (x^2 + x^2)/x \quad \{\text{because } x > 1\} \)
 5. \(\quad = 2x^2/x \)
 6. \(\quad = 2x \)
 7. \(\quad = 2|x| \)
 8. Therefore \(C = 2 \) and \(\forall x > K, |(x^2 + 1)/(x + 1)| \leq C|x| \).
Not big-O

• Show that n^3 is not $O(7n^2)$
Not big-O

• Show that n^3 is not $O(7n^2)$

Proof by Contradiction:
• Show that n^3 is not $O(7n^2)$

Proof by Contradiction:
Suppose n^3 is $O(7n^2)$
Show that \(n^3 \) is not \(O(7n^2) \)

Proof by Contradiction:
Suppose \(n^3 \) is \(O(7n^2) \)
Then there are \(C \) and \(k \) such that
\[
 n^3 \leq C'7n^2, \quad \forall n \geq k
\]
Show that n^3 is not $O(7n^2)$

Proof by Contradiction:
Suppose n^3 is $O(7n^2)$
Then there are C and k such that
\[n^3 \leq C7n^2, \quad \forall n \geq k \]
But $n^3 \leq C7n^2$ implies that $n \leq 7C$
Show that \(n^3 \) is not \(O(7n^2) \)

Proof by Contradiction:
Suppose \(n^3 \) is \(O(7n^2) \)
Then there are \(C \) and \(k \) such that
\[
n^3 \leq C \cdot 7n^2, \quad \forall n \geq k
\]
But \(n^3 \leq C \cdot 7n^2 \) implies that \(n \leq 7C \)
But this fails for values of \(n \) that are greater than \(7C \). So we have a contradiction.
General Facts

- Suppose $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$. Prove $f(x)$ is $O(h(x))$.

Peter Stone
General Facts

• Suppose $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$. Prove $f(x)$ is $O(h(x))$.

• Prove if $f(x)$ is $O(g(x))$, then $g(x)$ is $\Omega(f(x))$
General Facts

- Suppose $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$. Prove $f(x)$ is $O(h(x))$.

Peter Stone
General Facts

- Suppose $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$. Prove $f(x)$ is $O(h(x))$.

 1. $f(x)$ is $O(g(x)) \Rightarrow \forall x > K_1 |f(x)| \leq C_1 |g(x)|$ for some K_1, C_1.

Peter Stone
General Facts

• Suppose \(f(x) \) is \(O(g(x)) \) and \(g(x) \) is \(O(h(x)) \). Prove \(f(x) \) is \(O(h(x)) \).

1. \(f(x) \) is \(O(g(x)) \) \(\Rightarrow \) \(\forall x > K_1 \| f(x) \| \leq C_1 \| g(x) \| \) for some \(K_1, C_1 \).

2. \(g(x) \) is \(O(h(x)) \) \(\Rightarrow \) \(\forall x > K_2 \| g(x) \| \leq C_2 \| h(x) \| \) for some \(K_2, C_2 \).
Suppose $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$. Prove $f(x)$ is $O(h(x))$.

1. $f(x)$ is $O(g(x)) \Rightarrow \forall x > K_1 |f(x)| \leq C_1 |g(x)|$ for some K_1, C_1.
2. $g(x)$ is $O(h(x)) \Rightarrow \forall x > K_2 |g(x)| \leq C_2 |h(x)|$ for some K_2, C_2.
3. Let $K = \max(K_1, K_2)$ and $C = C_1 C_2$.
Suppose $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$. Prove $f(x)$ is $O(h(x))$.

1. $f(x)$ is $O(g(x))$ $\Rightarrow \forall x > K_1 \left| f(x) \right| \leq C_1 \left| g(x) \right|$ for some K_1, C_1.
2. $g(x)$ is $O(h(x))$ $\Rightarrow \forall x > K_2 \left| g(x) \right| \leq C_2 \left| h(x) \right|$ for some K_2, C_2.
3. Let $K = \max(K_1, K_2)$ and $C = C_1 C_2$.
4. Then $\forall x > K \left| f(x) \right| \leq C_1 \left| g(x) \right| \leq C_1 (C_2 \left| h(x) \right|) = C \left| h(x) \right|$.

Peter Stone
Suppose \(f(x) \) is \(O(g(x)) \) and \(g(x) \) is \(O(h(x)) \). Prove \(f(x) \) is \(O(h(x)) \).

1. \(f(x) \) is \(O(g(x)) \) \(\Rightarrow \) \(\forall x > K_1 |f(x)| \leq C_1 |g(x)| \) for some \(K_1, C_1 \).
2. \(g(x) \) is \(O(h(x)) \) \(\Rightarrow \) \(\forall x > K_2 |g(x)| \leq C_2 |h(x)| \) for some \(K_2, C_2 \).
3. Let \(K = \max(K_1, K_2) \) and \(C = C_1 C_2 \).
4. Then \(\forall x > K |f(x)| \leq C_1 |g(x)| \leq C_1 (C_2 |h(x)|) = C |h(x)| \).
5. Therefore \(f(x) \) is \(O(h(x)) \).
General Facts

• Suppose \(f(x) \) is \(O(g(x)) \) and \(g(x) \) is \(O(h(x)) \). Prove \(f(x) \) is \(O(h(x)) \).
 1. \(f(x) \) is \(O(g(x)) \) \(\Rightarrow \) \(\forall x > K_1 |f(x)| \leq C_1 |g(x)| \) for some \(K_1, C_1 \).
 2. \(g(x) \) is \(O(h(x)) \) \(\Rightarrow \) \(\forall x > K_2 |g(x)| \leq C_2 |h(x)| \) for some \(K_2, C_2 \).
 3. Let \(K = \max(K_1, K_2) \) and \(C = C_1 C_2 \).
 4. Then \(\forall x > K |f(x)| \leq C_1 |g(x)| \leq C_1 (C_2 |h(x)|) = C |h(x)| \).
 5. Therefore \(f(x) \) is \(O(h(x)) \).

• Prove if \(f(x) \) is \(O(g(x)) \), then \(g(x) \) is \(\Omega(f(x)) \)
 – (Try on piazza)
Oscillating Functions

- Consider $f(n) = n \sin n$
Oscillating Functions

• Consider $f(n) = n \sin n$

• Show that $f(n)$ is $O(n)$.

Peter Stone
Oscillating Functions

- Consider $f(n) = n \sin n$

- Show that $f(n)$ is $O(n)$.

- Is $f(n) \Omega(n)$?
Oscillating Functions

• Consider $f(n) = n\sin n$

• Show that $f(n)$ is $O(n)$.

• Is $f(n) \Omega(n)$?

• Show that $f(n)$ is $\Omega(\sin n)$.
Oscillating Functions

• Consider \(f(n) = n \sin(n) \)

• Show that \(f(n) \) is \(O(n) \).

• Is \(f(n) \) \(\Omega(n) \)?

• Show that \(f(n) \) is \(\Omega(\sin(n)) \).

• Is \(f(n) \) \(O(\sin(n)) \)?
Oscillating Functions

- Consider $f(n) = n(\sin n)$

- Show that $f(n)$ is $O(n)$.

- Is $f(n)$ $\Omega(n)$?

- Show that $f(n)$ is $\Omega(\sin n)$.

- Is $f(n)$ $O(\sin n)$?

- Show that $f(n)$ is neither $O(1)$ nor $\Omega(1)$

- Find a function $g(n)$ such that $f(n)$ is $\Theta(g(n))$.
Oscillating Functions

- Consider \(f(n) = n\sin(n) \)
- Show that \(f(n) \) is \(O(n) \).
- Is \(f(n) \) \(\Omega(n) \)?
- Show that \(f(n) \) is \(\Omega(\sin(n)) \).
- Is \(f(n) \) \(O(\sin(n)) \)?
- Show that \(f(n) \) is neither \(O(1) \) nor \(\Omega(1) \).
- Find a function \(g(n) \) such that \(f(n) \) is \(\Theta(g(n)) \).
 - \(g(n) = n\sin(n) \)
 - Every function is \(\Theta \) of itself!