Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Your quest quest is over!
Logistics

- Your quest quest is over! (no more modules)
- Homework due at start of discussion
Logistics

- Your quest quest is over! (no more modules)
- Homework due at start of discussion
- Warning: Quiz on program correctness in discussion
Logistics

- Your quest quest is over! (no more modules)
- Homework due at start of discussion
- Warning: Quiz on program correctness in discussion
 - If you do your homework well, you shouldn’t have trouble with the quiz.
Logistics

- Your quest quest is over! (no more modules)

- Homework due at start of discussion

- Warning: Quiz on program correctness in discussion
 - If you do your homework well, you shouldn’t have trouble with the quiz.

- Thursday: wrap up and test review
Questions / Important Points

- Diagonalization argument?
Questions / Important Points

- Diagonalization argument?
- How did T(P) work? IGN?
Proving Undecidability

- \(\text{HELLO} = \{ P \mid P \text{ Prints "Hello" and halts} \} \)
Proving Undecidability

- HELLO = \{P \mid P \text{ Prints "Hello" and halts}\}
- Recall: HELLO is undecidable.
Proving Undecidability

• HELLO = \{P \mid P \text{ Prints “Hello” and halts}\}

• Recall: HELLO is undecidable.

• Prove: There is no program “EQUAL” such that
 \(\text{EQUAL}(P,Q) \) outputs “yes” if \(\forall I P(I) = Q(I) \)
 else “no”
Proving Undecidability

- HELLO = \{P | P Prints “Hello” and halts\}
- Recall: HELLO is undecidable.
- Prove: There is no program “EQUAL” such that
 \(\text{EQUAL}(P,Q) \) outputs “yes” if \(\forall I P(I) = Q(I) \)
 else “no”
- i.e. EQUAL tells us if P and Q have same behavior on all inputs
Proving Undecidability

- HELLO = \{P | P Prints “Hello” and halts\}
- Recall: HELLO is undecidable.
- Prove: There is no program “EQUAL” such that \(\text{EQUAL}(P,Q)\) outputs “yes” if \(\forall I \, P(I) = Q(I)\) else “no”
- i.e. EQUAL tells us if P and Q have same behavior on all inputs
- Let HI = Print “Hello”; halt;
Proving Undecidability

- HELLO = \{ P \mid P \text{ Prints "Hello" and halts} \}
- Recall: HELLO is undecidable.
- Prove: There is no program "EQUAL" such that
 \(\text{EQUAL}(P, Q) \) outputs "yes" if \(\forall I P(I) = Q(I) \)
 else "no"
- i.e. EQUAL tells us if P and Q have same behavior on all inputs
- Let HI = Print "Hello"; halt;
- \(P \in \text{HELLO} \) iff \(\text{EQUAL}(P, HI) = \text{yes} \)
Proving Undecidability

- HELLO = \{P \mid P \text{ Prints “Hello” and halts}\}
- Recall: HELLO is undecidable.
- Prove: There is no program “EQUAL” such that
 \(\text{EQUAL}(P, Q)\) outputs “yes” if \(\forall IP(I) = Q(I)\)
 else “no”
- i.e. EQUAL tells us if P and Q have same behavior on all inputs

- Let HI = Print “Hello”; halt;
- \(P \in \text{HELLO}\) iff \(\text{EQUAL}(P, HI) = \text{yes}\)
- So EQUAL would give us a decision procedure for HELLO
Enumerating K

- K is not decidable
Enumerating K

- K is not decidable
- But we can write a program to enumerate its elements!
Enumerating K

- K is not decidable
- But we can write a program to enumerate its elements!
- How?
Enumerating K

- K is not decidable
- But we can write a program to enumerate its elements!
- How?

- $\overline{K} = \{P | P(P) \text{ does not halt}\}$
Enumerating K

- K is not decidable
- But we can write a program to enumerate its elements!
- How?

- $\overline{K} = \{P \mid P(P) \text{ does not halt}\}$
- Theorem: \overline{K} can’t be enumerated by a program
Enumerating K

- K is not decidable
- But we can write a program to enumerate its elements!
 - How?
- $\overline{K} = \{P \mid P(P) \text{ does not halt}\}$
- Theorem: \overline{K} can’t be enumerated by a program
- Why not?
Vocabulary

- Decidable set also called **Recursive**
Vocabulary

- Decidable set also called Recursive
 - (Nothing to do with recursion)
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive?
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive? no
 - K recursively enumerable?
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive? no
 - K recursively enumerable? yes
 - \overline{K} recursively enumerable?
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - K recursive? no
 - K recursively enumerable? yes
 - \overline{K} recursively enumerable? no
Vocabulary

- Decidable set also called **Recursive**
 - (Nothing to do with recursion)

- A set whose elements can be enumerated by a program is called **Recursively enumerable**.
 - \(K\) recursive? no
 - \(K\) recursively enumerable? yes
 - \(\overline{K}\) recursively enumerable? no

- Whole topic: “Computability Theory”
Philosophy: Church-Turing Thesis

- Any calculation method that can be grasped and performed by the human mind can be programmed on a conventional digital computer.
Philosophy: Church-Turing Thesis

• Any calculation method that can be grasped and performed by the human mind can be programmed on a conventional digital computer.

• If true, problems which are undecidable to a computer are similarly undecidable to the human mind.
Philosophy: Church-Turing Thesis

- Any calculation method that can be grasped and performed by the human mind can be programmed on a conventional digital computer.

- If true, problems which are undecidable to a computer are similarly undecidable to the human mind.

- A matter of belief...
Undecidable Problems

- Given an initial configuration in the game of life, will it go on forever?
- Given 2 context-free grammars, are they equivalent?
- Given a multi-variate polynomial over the integers, does it have a root?
- Generalization of the Collatz conjecture
Undecidable Problems

- Given an initial configuration in the game of life, will it go on forever?
- Given 2 context-free grammars, are they equivalent?
- Given a multi-variate polynomial over the integers, does it have a root?
- Generalization of the Collatz conjecture
 - \(n \) even: \(\rightarrow n/2 \)
Undecidable Problems

• Given an initial configuration in the game of life, will it go on forever?

• Given 2 context-free grammars, are they equivalent?

• Given a multi-variate polynomial over the integers, does it have a root?

• Generalization of the Collatz conjecture
 – n even: \(\rightarrow n/2 \)
 – n odd: \(\rightarrow 3n+1 \)