CS313H
Logic, Sets, and Functions: Honors
Fall 2012

Prof: Peter Stone
TA: Jacob Schrum
Proctor: Sudheesh Katkam

Department of Computer Science
The University of Texas at Austin
Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
 - Can skip one question
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
 - Can skip one question

- How to study
Logistics

• Final: Dec. 18, 9am-noon, CPE 2.208
 – Covers the whole class
 – Difficulty between the two midterms (but longer)
 – Can skip one question

• How to study
 – Review modules, slides, notes, book
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
 - Can skip one question

- How to study
 - Review modules, slides, notes, book
 - Practice doing problems (not just understanding)
Logistics

• Final: Dec. 18, 9am-noon, CPE 2.208
 – Covers the whole class
 – Difficulty between the two midterms (but longer)
 – Can skip one question

• How to study
 – Review modules, slides, notes, book
 – Practice doing problems (not just understanding)
 – Ask us for more practice problems if needed
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
 - Can skip one question

- How to study
 - Review modules, slides, notes, book
 - Practice **doing** problems (not just understanding)
 - Ask us for more practice problems if needed

- Office hour today: 1:30-2:30
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
 - Can skip one question

- How to study
 - Review modules, slides, notes, book
 - Practice doing problems (not just understanding)
 - Ask us for more practice problems if needed

- Office hour today: 1:30-2:30
 - Available by piazza, email, and appointment until final
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
 - Can skip one question

- How to study
 - Review modules, slides, notes, book
 - Practice **doing** problems (not just understanding)
 - Ask us for more practice problems if needed

- Office hour today: 1:30-2:30
 - Available by piazza, email, and appointment until final

- Please complete the official survey
Logistics

- Final: Dec. 18, 9am-noon, CPE 2.208
 - Covers the whole class
 - Difficulty between the two midterms (but longer)
 - Can skip one question

- How to study
 - Review modules, slides, notes, book
 - Practice **doing** problems (not just understanding)
 - Ask us for more practice problems if needed

- Office hour today: 1:30-2:30
 - Available by piazza, email, and appointment until final

- Please complete the official survey
 - Think about what you’ve learned...
Course Recap

- Propositional logic and Satisfiability
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques,
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
- Special types of graphs (planar, bipartite)
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
- Special types of graphs (planar, bipartite)
- (*) Eulerian and Hamiltonian graphs
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
- Special types of graphs (planar, bipartite)
- (*) Eulerian and Hamiltonian graphs
- (*) Counting and pigeonhole principle
Course Recap

• Propositional logic and Satisfiability
• Predicates, and Quantifiers
• Basic proof techniques, mathematical induction
• Sets and functions
• (*) Infinite sets
• Graphs and graph coloring
• Special types of graphs (planar, bipartite)
• (*) Eulerian and Hamiltonian graphs
• (*) Counting and pigeonhole principle
• Recurrences
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
- Special types of graphs (planar, bipartite)
- (*) Eulerian and Hamiltonian graphs
- (*) Counting and pigeonhole principle
- Recurrences
- Big O, program efficiency,
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
- Special types of graphs (planar, bipartite)
- (*) Eulerian and Hamiltonian graphs
- (*) Counting and pigeonhole principle
- Recurrences
- Big O, program efficiency, and master theorem
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
- Special types of graphs (planar, bipartite)
- (*) Eulerian and Hamiltonian graphs
- (*) Counting and pigeonhole principle
- Recurrences
- Big O, program efficiency, and master theorem
- (*) Proving program correctness
Course Recap

- Propositional logic and Satisfiability
- Predicates, and Quantifiers
- Basic proof techniques, mathematical induction
- Sets and functions
- (*) Infinite sets
- Graphs and graph coloring
- Special types of graphs (planar, bipartite)
- (*) Eulerian and Hamiltonian graphs
- (*) Counting and pigeonhole principle
- Recurrences
- Big O, program efficiency, and master theorem
- (*) Proving program correctness
- (*) Undecidability
Test Review

• Just a start to jog your memory
Test Review

• Just a start to jog your memory

• Can’t cover all problem types
Test Review

- Just a start to jog your memory
- Can’t cover all problem types
- Will go through some of these quickly
Test Review

• Just a start to jog your memory
• Can’t cover all problem types
• Will go through some of these quickly
• Continue on your own for the next 12 days!
True or False?

- Predicate: $\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$
 - Domain: rational numbers
True or False?

- Predicate: $\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$
 - Domain: rational numbers
 - Domain: integers
True or False?

- Predicate: $\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$
 - Domain: rational numbers
 - Domain: integers

Answer: Under rational domain, the predicate is false because for all x, y where $x < y$ there always exists $z = \frac{x+y}{2}$ which satisfies that condition that $x < z < y$. So for all x, such y doesn’t exist, which means the predicate is false.
True or False?

- Predicate: $\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$
 - Domain: rational numbers
 - Domain: integers

Answer: Under rational domain, the predicate is false because for all x, y where $x < y$ there always exists $z = \frac{x+y}{2}$ which satisfies that condition that $x < z < y$. So for all x, such y doesn’t exist, which means the predicate is false.
Under integer domain, there exists $y = x + 1$ such that no integer z exists such that $x < z < y$. Thus the predicate is true.
How many primes are there?

• Assume the following fact:
 “Every integer larger than 1 is either prime or can be written as a product of primes”
How many primes are there?

- Assume the following fact:
 “Every integer larger than 1 is either prime or can be written as a product of primes”

Use this fact to prove: “There are infinitely many primes”
Solution

1. Suppose a finite number of primes \(n \) and seek contradiction.
Solution

1. Suppose a finite number of primes n and seek contradiction.
2. Let p_1, \ldots, p_n be the primes, and define $m = (p_1 \times \ldots \times p_n) + 1$
Solution

1. Suppose a finite number of primes n and seek contradiction.

2. Let p_1, \ldots, p_n be the primes, and define $m = (p_1 \times \ldots \times p_n) + 1$

3. For every prime p_i, m is not divisible by p_i since there will be a remainder of 1.

Peter Stone
Solution

1. Suppose a finite number of primes n and seek contradiction.
2. Let $p_1, ..., p_n$ be the primes, and define $m = (p_1 \times ... \times p_n) + 1$
3. For every prime p_i, m is not divisible by p_i since there will be a remainder of 1.
4. Use the fact: m is either prime or can be written as a product of primes.
Solution

1. Suppose a finite number of primes n and seek contradiction.

2. Let p_1, \ldots, p_n be the primes, and define $m = (p_1 \times \ldots \times p_n) + 1$

3. For every prime p_i, m is not divisible by p_i since there will be a remainder of 1.

4. Use the fact: m is either prime or can be written as a product of primes.

5. If m is prime, it is bigger than all of p_1, \ldots, p_n, and therefore not equal to any of them. Contradiction.
Solution

1. Suppose a finite number of primes n and seek contradiction.
2. Let $p_1, ..., p_n$ be the primes, and define $m = (p_1 \times ... \times p_n) + 1$
3. For every prime p_i, m is not divisible by p_i since there will be a remainder of 1.
4. Use the fact: m is either prime or can be written as a product of primes.
5. If m is prime, it is bigger than all of $p_1, ..., p_n$, and therefore not equal to any of them. Contradiction.
6. If m is not prime, it is a product of primes. Let q be one of these primes.
Solution

1. Suppose a finite number of primes \(n \) and seek contradiction.
2. Let \(p_1, \ldots, p_n \) be the primes, and define \(m = (p_1 \times \ldots \times p_n) + 1 \).
3. For every prime \(p_i \), \(m \) is not divisible by \(p_i \) since there will be a remainder of 1.
4. Use the fact: \(m \) is either prime or can be written as a product of primes.
5. If \(m \) is prime, it is bigger than all of \(p_1, \ldots, p_n \), and therefore not equal to any of them. Contradiction.
6. If \(m \) is not prime, it is a product of primes. Let \(q \) be one of these primes.
7. Then \(m \) is divisible by \(q \).
Solution

1. Suppose a finite number of primes \(n \) and seek contradiction.

2. Let \(p_1, \ldots, p_n \) be the primes, and define \(m = (p_1 \times \ldots \times p_n) + 1 \).

3. For every prime \(p_i \), \(m \) is not divisible by \(p_i \) since there will be a remainder of 1.

4. Use the fact: \(m \) is either prime or can be written as a product of primes.

5. If \(m \) is prime, it is bigger than all of \(p_1, \ldots, p_n \), and therefore not equal to any of them. Contradiction.

6. If \(m \) is not prime, it is a product of primes. Let \(q \) be one of these primes.

7. Then \(m \) is divisible by \(q \).

8. Since \(m \) is not divisible by any \(p_i \), prime \(q \) is not equal to any of \(p_i \). Contradiction.
Infinite sets

- Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.
Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.

Call the primes in order starting from 2 as p_1, p_2, p_3, \ldots
Infinite sets

- Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.

Call the primes in order starting from 2 as \(p_1, p_2, p_3, \ldots \)

\[f(0) = p_1 \]
Infinite sets

• Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.

Call the primes in order starting from 2 as \(p_1, p_2, p_3, \ldots \)

\[
\begin{align*}
 & f(0) = p_1 \\
 & n > 0 \Rightarrow f(n) = p_{2n}
\end{align*}
\]
Infinite sets

• Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.

Call the primes in order starting from 2 as p_1, p_2, p_3, \ldots

\[
f(0) = p_1
\]

\[
n > 0 \Rightarrow f(n) = p_{2n}
\]

\[
n < 0 \Rightarrow f(n) = p_{-2n+1}
\]
Infinite sets

- Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.

Call the primes in order starting from 2 as \(p_1, p_2, p_3, \ldots \)

\[
\begin{align*}
f(0) &= p_1 \\
n > 0 &\Rightarrow f(n) = p_{2n} \\
n < 0 &\Rightarrow f(n) = p_{-2n+1}
\end{align*}
\]

To show:
Infinite sets

- Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.

Call the primes in order starting from 2 as p_1, p_2, p_3, \ldots

- $f(0) = p_1$
- $n > 0 \Rightarrow f(n) = p_{2n}$
- $n < 0 \Rightarrow f(n) = p_{-2n+1}$

To show:
Every integer has a unique image (injective)
Infinite sets

• Prove that the cardinality of the prime numbers is the same as the cardinality of the integers by defining a bijection from the integers to the primes.

Call the primes in order starting from 2 as \(p_1, p_2, p_3, \ldots \)

\[
f(0) = p_1 \\
n > 0 \Rightarrow f(n) = p_{2n} \\
n < 0 \Rightarrow f(n) = p_{-2n+1}
\]

To show:
Every integer has a unique image (injective)
Every prime has a pre-image (surjective)
Graphs

- Prove that any bipartite graph with t vertices has at most $\frac{t^2}{4}$ edges.
Graphs

• Prove that any bipartite graph with t vertices has at most $\frac{t^2}{4}$ edges.

Proof: If G is a bipartite graph, G can be partition into vertex set A and B such that $v(A) + v(B) = t$ and there is no edge within set A and B.
Graphs

• Prove that any bipartite graph with t vertices has at most $\frac{t^2}{4}$ edges.

Proof: If G is a bipartite graph, G can be partition into vertex set A and B such that $v(A) + v(B) = t$ and there is no edge within set A and B. For every vertex in A, its degree is at most $v(B)$,
Graphs

- Prove that any bipartite graph with \(t \) vertices has at most \(\frac{t^2}{4} \) edges.

Proof: If \(G \) is a bipartite graph, \(G \) can be partition into vertex set \(A \) and \(B \) such that \(v(A) + v(B) = t \) and there is no edge within set \(A \) and \(B \). For every vertex in \(A \), its degree is at most \(v(B) \), thus the total number of edges are at most \(|E| \leq v(A)v(B) \)
Prove that any bipartite graph with t vertices has at most $\frac{t^2}{4}$ edges.

Proof: If G is a bipartite graph, G can be partition into vertex set A and B such that $v(A) + v(B) = t$ and there is no edge within set A and B. For every vertex in A, its degree is at most $v(B)$, thus the total number of edges are at most $|E| \leq v(A)v(B) = v(A)(t - v(A))$.
Prove that any bipartite graph with \(t \) vertices has at most \(\frac{t^2}{4} \) edges.

Proof: If \(G \) is a bipartite graph, \(G \) can be partition into vertex set \(A \) and \(B \) such that \(v(A) + v(B) = t \) and there is no edge within set \(A \) and \(B \). For every vertex in \(A \), its degree is at most \(v(B) \), thus the total number of edges are at most \(|E| \leq v(A)v(B) = v(A)(t - v(A)) = \frac{t^2}{4} - (v(A) - \frac{t}{2})^2 \)
Prove that any bipartite graph with t vertices has at most $\frac{t^2}{4}$ edges.

Proof: If G is a bipartite graph, G can be partition into vertex set A and B such that $v(A) + v(B) = t$ and there is no edge within set A and B. For every vertex in A, its degree is at most $v(B)$, thus the total number of edges are at most $|E| \leq v(A)v(B) = v(A)(t - v(A)) = \frac{t^2}{4} - (v(A) - \frac{t}{2})^2 \leq \frac{t^2}{4}$
Graphs

- Prove that any bipartite graph with \(t \) vertices has at most \(\frac{t^2}{4} \) edges.

Proof: If \(G \) is a bipartite graph, \(G \) can be partition into vertex set \(A \) and \(B \) such that \(v(A) + v(B) = t \) and there is no edge within set \(A \) and \(B \). For every vertex in \(A \), its degree is at most \(v(B) \), thus the total number of edges are at most \(|E| \leq v(A)v(B) = v(A)(t - v(A)) = \frac{t^2}{4} - (v(A) - \frac{t}{2})^2 \leq \frac{t^2}{4} \)

Proof completed.
Memory wheels

- Definition: a cycle of bits such that every n-bit pattern occurs among adjacent bits
Memory wheels

- Definition: a cycle of bits such that every n-bit pattern occurs among adjacent bits
- Example: memory wheel with 8 bits that contains all 3-bit patterns
Memory wheels

- Definition: a cycle of bits such that every n-bit pattern occurs among adjacent bits

- Example: memory wheel with 8 bits that contains all 3-bit patterns

- Theorem: For every n, a memory wheel exists of size 2^n which has all n-bit patterns
Memory wheels

- **Definition**: a cycle of bits such that every n-bit pattern occurs among adjacent bits

- **Example**: memory wheel with 8 bits that contains all 3-bit patterns

- **Theorem**: For every n, a memory wheel exists of size 2^n which has all n-bit patterns

- **Proof**: uses Eurlerian circuits
Counting

• How many ways are there to sit 7 people at a round table with 7 chairs?
How many ways are there to sit 7 people at a round table with 7 chairs?

Consider two ways the same if everyone has the same 2 neighbors (regardless of which side they are on)
Counting

• How many ways are there to sit 7 people at a round table with 7 chairs?
 – Consider two ways the same if everyone has the same 2 neighbors (regardless of which side they are on)
 – What if there are 2 who can’t sit next to each other?
Counting

• How many ways are there to sit 7 people at a round table with 7 chairs?
 – Consider two ways the same if everyone has the same 2 neighbors (regardless of which side they are on)
 – What if there are 2 who can’t sit next to each other?

• \(\frac{6!}{2} = 360 \)
Counting

• How many ways are there to sit 7 people at a round table with 7 chairs?
 – Consider two ways the same if everyone has the same 2 neighbors (regardless of which side they are on)
 – What if there are 2 who can’t sit next to each other?

• \(\frac{6!}{2} = 360 \)

• 360 - 5! = 360 - 120 = 240
Let a be any positive number. Show that $a^n = O(n!)$.
Let a be any positive number. Show that $a^n = O(n!)$.
Proof

Note we have

\[a^n = a \times a \ldots a \]

and

\[n! = n \times (n - 1) \ldots 2 \times 1 \]

When \(a \leq 1 \), we have \(C = 1, k = 1 \).
Proof

Note we have

\[a^n = \underbrace{a \times a \ldots a}_n \]

and

\[n! = n \times (n - 1) \ldots 2 \times 1 \]

When \(a \leq 1 \), we have \(C = 1, k = 1 \).
When \(a > 1 \), \ldots
When $a > 1$, let $k = 2a^2$.
When $a > 1$, let $k = 2a^2$, when $n > k$ we have $\frac{n}{2} > a^2$ and
When $a > 1$, let $k = 2a^2$, when $n > k$ we have $\frac{n}{2} > a^2$ and

$$n! = n \times (n - 1) \cdots \frac{n}{2} \times \left(\frac{n}{2} - 1\right) \cdots \times 1$$
When $a > 1$, let $k = 2a^2$, when $n > k$ we have $\frac{n}{2} > a^2$ and

$$n! = n \times (n-1) \cdots \frac{n}{2} \times \left(\frac{n}{2} - 1\right) \cdots \times 1$$

$$> \underbrace{a^2 \times a^2 \cdots a^2}_{\frac{n}{2}} \times \left(\frac{n}{2} - 1\right) \cdots \times 1$$
When $a > 1$, let $k = 2a^2$, when $n > k$ we have $\frac{n}{2} > a^2$ and

\[
\begin{align*}
n! &= n \times (n - 1) \cdots \frac{n}{2} \times \left(\frac{n}{2} - 1\right) \cdots \times 1 \\
&> a^2 \times a^2 \cdots a^2 \times \left(\frac{n}{2} - 1\right) \cdots \times 1 \\
&> (a^2)^{\frac{n}{2}}
\end{align*}
\]
When $a > 1$, let $k = 2a^2$, when $n > k$ we have $\frac{n}{2} > a^2$ and

\[
\begin{align*}
n! &= n \times (n-1) \ldots \frac{n}{2} \times \left(\frac{n}{2} - 1\right) \ldots \times 1 \\
&> a^2 \times a^2 \ldots a^2 \times \left(\frac{n}{2} - 1\right) \ldots \times 1 \\
&> (a^2)^{\frac{n}{2}} \\
&= a^n
\end{align*}
\]
When \(a > 1 \), let \(k = 2a^2 \), when \(n > k \) we have \(\frac{n}{2} > a^2 \) and

\[
\begin{align*}
\frac{n!}{a^n} &= \frac{n}{2} \times \left(\frac{n}{2} - 1\right) \times \cdots \times 1 \\
&> \left(\frac{n}{2}\right)^{\frac{n}{2}} \\
&= \left(a^2\right)^{\frac{n}{2}} \\
&= a^n
\end{align*}
\]

Thus we have \(C = 1, k = \max(1, 2a^2) \) such that for all \(x > k \), \(a^n < Cn! \). So we have \(a^n = O(n!) \). Proof completed.
Functions

- Let \(A \) be a finite set and \(f : A \rightarrow A \) be a function. Prove that \(f \) is injective if and only if \(f \) is surjective.
Functions

• Let A be a finite set and $f : A \to A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective.
• Let A be a finite set and $f : A \to A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B be the set of the images of $f(x)$.
Functions

- Let A be a finite set and $f : A \to A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B be the set of the images of $f(x)$. Since f is injective, we have $|B| = |A|$.
Functions

Let \(A \) be a finite set and \(f : A \to A \) be a function. Prove that \(f \) is injective if and only if \(f \) is surjective.

Proof: First prove that if \(f \) is injective then \(f \) is surjective. Let \(B \) be the set of the images of \(f(x) \). Since \(f \) is injective, we have \(|B| = |A| \). Since we have \(B \subseteq A \) and \(A \) has finite number of elements, we have \(B = A \) which means \(f \) is surjective.
• Let A be a finite set and $f : A \to A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B be the set of the images of $f(x)$. Since f is injective, we have $|B| = |A|$. Since we have $B \subseteq A$ and A has finite number of elements, we have $B = A$ which means f is surjective. Then we prove f is surjective then f is injective.
Functions

Let A be a finite set and $f : A \to A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B be the set of the images of $f(x)$. Since f is injective, we have $|B| = |A|$. Since we have $B \subseteq A$ and A has finite number of elements, we have $B = A$ which means f is surjective.

Then we prove f is surjective then f is injective. Assume BWOC f is not injective which means there exists x, y such that $f(x) = f(y) = z$.

Peter Stone
Let A be a finite set and $f : A \rightarrow A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B be the set of the images of $f(x)$. Since f is injective, we have $|B| = |A|$. Since we have $B \subseteq A$ and A has finite number of elements, we have $B = A$ which means f is surjective.

Then we prove f is surjective then f is injective. Assume BWOC f is not injective which means there exists x, y such that $f(x) = f(y) = z$. Thus we have $|B| \leq |A - \{x, y\}| + 1 = |A| - 2 + 1 = |A| - 1$
Functions

- Let A be a finite set and $f : A \to A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B be the set of the images of $f(x)$. Since f is injective, we have $|B| = |A|$. Since we have $B \subseteq A$ and A has finite number of elements, we have $B = A$ which means f is surjective.

Then we prove f is surjective then f is injective. Assume BWOC f is not injective which means there exists x, y such that $f(x) = f(y) = z$. Thus we have $|B| \leq |A - \{x, y\}| + 1 = |A| - 2 + 1 = |A| - 1$ which means f is not surjective.
Functions

- Let A be a finite set and $f : A \rightarrow A$ be a function. Prove that f is injective if and only if f is surjective.

Proof: First prove that if f is injective then f is surjective. Let B be the set of the images of $f(x)$. Since f is injective, we have $|B| = |A|$. Since we have $B \subseteq A$ and A has finite number of elements, we have $B = A$ which means f is surjective.

Then we prove f is surjective then f is injective. Assume BWOC f is not injective which means there exists x, y such that $f(x) = f(y) = z$. Thus we have $|B| \leq |A - \{x, y\}| + 1 = |A| - 2 + 1 = |A| - 1$ which means f is not surjective. Contradiction.
Other problem types

- DeMorgan’s laws and other propositional logic
- Induction
- Planar graphs
- Graph coloring
- Recurrences
- Master theorem
- Proving program correctness
- Undecidability
Dismount

- I’ve really enjoyed teaching you
Dismount

• I’ve really enjoyed teaching you

• Thank you for your contributions to the class...
Dismount

- I’ve really enjoyed teaching you

- Thank you for your contributions to the class...for being good colleagues
Dismount

- I’ve really enjoyed teaching you
- Thank you for your contributions to the class... for being good colleagues
- Good luck on the final.
Dismount

- I’ve really enjoyed teaching you

- **Thank you** for your contributions to the class... for being good colleagues

- Good luck on the final.

- And good luck in your future CS courses!
Dismount

- I’ve really enjoyed teaching you

- **Thank you** for your contributions to the class...for being good colleagues

- Good luck on the final.

- And good luck in your future CS courses!

- See you Dec. 18th