Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Good Morning, Colleagues

Are there any questions?

- How do we convert everything to CNF and DNF? Why do we care?
 - (answered in discussion)
Good Morning, Colleagues

Are there any questions?

- How do we convert everything to CNF and DNF? Why do we care?
 - (answered in discussion)
- How do we write “There exists one and only one” (and its negation)?
 - (answered on piazza)
Logistics

- Office hours - try to let us know in advance if you’re coming
Logistics

- Office hours - try to let us know in advance if you’re coming
- Keep posting on piazza
Logistics

- Office hours - try to let us know in advance if you’re coming

- Keep posting on piazza

- First homework due at start of class
Some important concepts

- Multiple ways of converting the same English sentence to logic
- s.t. = “such that”
- Dogs and collars problem
Translate these statements into English:

1. \(\forall x [(H(x) \land \neg \exists y M(x, y)) \rightarrow U(x)] \)
 where \(H(x) = \) "x is a man" , \(M(x,y) = \) "x is married to y" ,
 \(U(x) = \) "x is unhappy".
Translate these statements into English:

1. \(\forall x[(H(x) \land \neg \exists y M(x, y)) \rightarrow U(x)] \)
 where \(H(x) = "x \text{ is a man}" \), \(M(x,y) = "x \text{ is married to } y" \),
 \(U(x) = "x \text{ is unhappy}" \).

2. \(\exists z(P(z, Jake) \land S(z, Alex) \land W(Alex)) \)
 \(P(z,x) = "z \text{ is a parent of } x" \), \(S(z,y) = "z \text{ and } y \text{ are siblings}" \),
 \(W(y) = "y \text{ is a woman}" \).

3. \(\forall n((P(n) \land n > 2) \rightarrow \neg \exists a, b, c(P(a) \land P(b) \land P(c) \land (a^n + b^n = c^n))) \)
 where \(P(n) = "n \text{ is a positive integer}" \).
Translate the following statements into logical notation

No new predicates (just use common mathematical symbols), where the domain is natural numbers.

1. x is a perfect square.

2. x is a multiple of y.

3. p is prime.
Translate the following statements into logical notation

No new predicates (just use common mathematical symbols), where the domain is natural numbers.

1. x is a perfect square.
 \[\exists y (x = y^2) \]

2. x is a multiple of y.
 \[\exists z (x = yz) \]

3. p is prime.
 \[(p \in \mathbb{Z}) \land (p > 1) \land \neg \exists x, y (x < p \land y < p \land (xy = p)) \]
Domains

How does the choice of domain for the following quantified statements affect whether each statement is true or false? The domains to pick from are \(\mathbb{N} \), \(\mathbb{Z} \), \(\mathbb{Q} \) and \(\mathbb{R} \).

1. \(\forall x \exists y \left(2x - y = 0 \right) \)

2. \(\exists y \forall x \left(2x - y = 0 \right) \)

3. \(\forall x \exists y \left(x - 2y = 0 \right) \)
Domains

How does the choice of domain for the following quantified statements affect whether each statement is true or false? The domains to pick from are \mathbb{N}, \mathbb{Z}, \mathbb{Q} and \mathbb{R}.

1. $\forall x \exists y (2x - y = 0)$

2. $\exists y \forall x (2x - y = 0)$

3. $\forall x \exists y (x - 2y = 0)$

4. $\forall x (x < 10 \rightarrow \forall y (y < x \rightarrow y < 9))$

5. $\exists x \exists y (x + y = 100)$

6. $\forall x \exists y (y > x \land \exists z (y + z = 100))$
True or False?

1. Domain: all real numbers
 \[P(x, y): x + y = 0 \]
 Predicate 1: \(\forall x \exists y P(x, y) \)
 Predicate 2: \(\exists x \forall y P(x, y) \)
True or False?

1. Domain: all real numbers
 \(P(x, y) \): \(x + y = 0 \)
 Predicate 1: \(\forall x \exists y P(x, y) \)
 Predicate 2: \(\exists x \forall y P(x, y) \)

2. Domain: all rational numbers
 Predicate: \(\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y)) \)
 What if the domain is all integers?
Quiz: True or False?

- If $P(x)$ = “x is prime”
- $Q(x)$ = “x is even”
- the domain is the natural numbers

1. $P(5) \land Q(10) \land \neg Q(5) \land \neg P(4)$
2. $(\forall x P(x)) \rightarrow Q(4)$
3. $\neg \exists x, y (P(x) \land P(y) \land P(x + y))$
4. $\exists x (P(x) \land Q(x) \land \forall y ((P(y) \land Q(y)) \rightarrow x = y))$
5. $\forall x (\neg P(x) \rightarrow Q(x))$
6. $\forall x ((x > 2 \land P(x)) \rightarrow \exists y (Q(y) \land x = y + 1))$
Assignments for Tuesday

- First homework **due at start of class**
- Modules 4,5 with associated readings
Assignments for Tuesday

- First homework **due at start of class**
- Modules 4,5 with associated readings