CS313H Logic, Sets, and Functions: Honors Fall 2012

Prof: Peter Stone

TA: Jacob Schrum

Proctor: Sudheesh Katkam

Department of Computer Science The University of Texas at Austin

Challenge

 Prove that for any non-empty set A, there does not exist a bijective function from A to P(A) where P(A) is power set of A (remember that A could be infinite).

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

Logistics

• Start/keep reviewing everything we've done

Logistics

- Start/keep reviewing everything we've done
- Thurday and Tuesday is more advanced material

Logistics

- Start/keep reviewing everything we've done
- Thurday and Tuesday is more advanced material
 - Different types of infinity

Some important concepts

• Sets vs. tuples

Some important concepts

- Sets vs. tuples
- Cartesian product: deck of cards, plane

Some important concepts

- Sets vs. tuples
- Cartesian product: deck of cards, plane
- injection, surjection, bijection

$$\bullet \ X \subseteq A \cap B \leftrightarrow X \subseteq A \wedge X \subseteq B$$

• $X \subseteq A \cap B \leftrightarrow X \subseteq A \land X \subseteq B$

• $P(A \cap B) = P(A) \cap P(B)$ (use previous problem's result)

• $A \subseteq B \text{ iff } P(A) \subseteq P(B)$.

• $A \subseteq B$ iff $P(A) \subseteq P(B)$.

• $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

• Suppose $f: A \to B$ and $g: B \to C$. Prove that if f and g are injective, then $g \circ f$ is injective.

- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are injective, then $g\circ f$ is injective.
 - 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$

- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are injective, then $g\circ f$ is injective.
 - 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$
 - 2. $\equiv g(f(x)) = g(f(y)) \{ \mathsf{Def} \circ \}$
 - 3. $\Rightarrow f(x) = f(y) \{g \text{ is injective}\}\$
 - 4. $\Rightarrow x = y \{ f \text{ is injective} \}$

Therefore $g \circ f$ is injective.

- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are injective, then $g\circ f$ is injective.
 - 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$
 - 2. $\equiv g(f(x)) = g(f(y)) \{ \mathsf{Def} \circ \}$
 - $3. \Rightarrow f(x) = f(y) \{g \text{ is injective}\}$
 - 4. $\Rightarrow x = y \{ f \text{ is injective} \}$
 - Therefore $g \circ f$ is injective.
- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are surjective, then $g\circ f$ is surjective.

- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are injective, then $g\circ f$ is injective.
 - 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$
 - 2. $\equiv g(f(x)) = g(f(y)) \{ Def \circ \}$
 - 3. $\Rightarrow f(x) = f(y) \{g \text{ is injective}\}\$
 - 4. $\Rightarrow x = y \{ f \text{ is injective} \}$
 - Therefore $g \circ f$ is injective.
- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are surjective, then $g\circ f$ is surjective.
 - 1. Pick arbitrary $c \in C$.

- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are injective, then $g\circ f$ is injective.
 - 1. Let $(g \circ f)(x) = (g \circ f)(y)$ for $x, y \in A$
 - 2. $\equiv g(f(x)) = g(f(y)) \{ \mathsf{Def} \circ \}$
 - 3. $\Rightarrow f(x) = f(y) \{g \text{ is injective}\}\$
 - 4. $\Rightarrow x = y \{ f \text{ is injective} \}$
 - Therefore $g \circ f$ is injective.
- Suppose $f:A\to B$ and $g:B\to C$. Prove that if f and g are surjective, then $g\circ f$ is surjective.
 - 1. Pick arbitrary $c \in C$.
 - 2. Since g is onto, there is a $b \in B$ s.t. g(b) = c.
 - 3. Since $b \in B$, and f is onto, there is an $a \in A$ s.t. f(a) = b.
 - 4. $(g \circ f)(a) = g(f(a)) = g(b) = c$.
 - Therefore $g \circ f$ is surjective.

Assignments for Thursday

- Look at fourth homework
- Module 16.5

Assignments for Thursday

- Look at fourth homework
- Module 16.5