CS313H Logic, Sets, and Functions: Honors Fall 2012

Prof: Peter Stone

TA: Jacob Schrum

Proctor: Sudheesh Katkam

Department of Computer Science The University of Texas at Austin

Challenge

 Prove that for any non-empty set A, there does not exist a bijective function from A to P(A) where P(A) is power set of A (remember that A could be infinite).

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

Logistics

- Quest last question removed from score
 - Assume Natural numbers ($\mathbb N$) start at 1

Logistics

- Quest last question removed from score
 - Assume Natural numbers (\mathbb{N}) start at 1
- Next week has relatively little new material
 - Time for concepts to sink in
 - Test review

Quiz!

- Write the power set of $\{A, 1\}$: $P(\{A, 1\}) = ?$
- Write the Cartesian product of $\{A,B\}$ and $\{C,D\}$: $\{A,B\} \times \{C,D\} = ?$
- Which of the pictures on the board is an injection?
- Which of the pictures on the board is a surjection?
- Which of the pictures on the board is a bijection?

Challenge

 Prove that for any non-empty set A, there does not exist a bijective function from A to P(A) where P(A) is power set of A (remember that A could be infinite).

Prove or disprove

• Given $f:A\to B$ and subsets $Y,Z\subseteq A$, is it true that $f(Y\cup Z)=f(Y)\cup f(Z)$? Prove or disprove.

Prove or disprove

• Given $f:A\to B$ and subsets $Y,Z\subseteq A$, is it true that $f(Y\cup Z)=f(Y)\cup f(Z)$? Prove or disprove.

• Given $f:A\to B$ and subsets $Y,Z\subseteq A$, is it true that $f(Y\cap Z)=f(Y)\cap f(Z)$? Prove or disprove.

Prove or disprove

• Given $f:A\to B$ and subsets $Y,Z\subseteq A$, is it true that $f(Y\cup Z)=f(Y)\cup f(Z)$? Prove or disprove.

• Given $f:A\to B$ and subsets $Y,Z\subseteq A$, is it true that $f(Y\cap Z)=f(Y)\cap f(Z)$? Prove or disprove.

Answer: Let $A=\{1,2,3\}$ and f(1)=1, f(2)=2 and f(3)=1. Let $Y=\{1,2\}$ and $Z=\{2,3\}$. We have $Y\cap Z=\{2\}$ and $f(Y\cap Z)=f(\{2\})=\{2\}$. However, since $f(Y)=f(\{1,2\})=\{1,2\}$ and $f(Z)=f(\{2,3\})=\{1,2\}$, we have $f(Y)\cap f(Z)=\{1,2\}\neq f(Y\cap Z)$. Done.

Last Quest Problem

•
$$f(x,y) = (1/2)(x+y-2)(x+y-1) + y$$

Last Quest Problem

•
$$f(x,y) = (1/2)(x+y-2)(x+y-1) + y$$

Assignments for Tuesday

- Fourth homework due at start of class
- Modules 16.6 with associated readings