Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

• Midterm 1, Tuesday
 – Handwritten notes allowed
 – No book, nothing printed, nothing electronic
 – Be on time!
Logistics

- Midterm 1, Tuesday
 - Handwritten notes allowed
 - No book, nothing printed, nothing electronic
 - Be on time!

- 2 modules due Thursday after exam
Logistics

- Midterm 1, Tuesday
 - Handwritten notes allowed
 - No book, nothing printed, nothing electronic
 - Be on time!

- 2 modules due Thursday after exam
 - First is mainly definitions - may want to do it this week
Logistics

- Midterm 1, Tuesday
 - Handwritten notes allowed
 - No book, nothing printed, nothing electronic
 - Be on time!

- 2 modules due Thursday after exam
 - First is mainly definitions - may want to do it this week

- HW4 review
A Bijection That Works

Use C-B-S to prove that \(|[0, 1)| = |(0, 1)|\)
A Bijection That Works

Use C-B-S to prove that $|[0, 1)| = |(0, 1)|$

$$f(x) = \begin{cases}
1/2 & \text{if } x = 0 \\
\frac{x}{1 + x} & \text{if } \exists n \in \mathbb{N}[x = 1/n] \\
x & \text{otherwise}
\end{cases}$$

Pete Stone
Satisfiable or unsatisfiable?

\[\neg (X_1 \lor \neg (X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg (X_1 \lor \neg X_2))) \]
Satisfiable or unsatisfiable?

\[\neg(X_1 \lor \neg(X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2))) \]

Unsatisfiable.

Some simplification first will make this easier to see:
\[\neg(X_1 \lor \neg(X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2))) \] (original)
Satisfiable or unsatisfiable?

\[\neg (X_1 \lor \neg(X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2))) \]

Unsatisfiable.

Some simplification first will make this easier to see:

\[\neg (X_1 \lor \neg(X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2))) \text{ (original)} \]

\[\equiv \neg X_1 \land X_2 \land X_3 \land \neg(\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2)) \text{ (De Morgan, double neg.)} \]
Satisfiable or unsatisfiable?

- $\neg(X_1 \lor \neg(X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2)))$

 Unsatisfiable.

 Some simplification first will make this easier to see:
 $\neg(X_1 \lor \neg(X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2)))$ (original)
 $\equiv \neg X_1 \land X_2 \land X_3 \land \neg(\neg X_1 \land X_3 \land \neg(X_1 \lor \neg X_2))$ (De Morgan, double neg.)
 $\equiv \neg X_1 \land X_2 \land X_3 \land (X_1 \lor \neg X_3 \lor X_1 \lor \neg X_2)$ (De Morgan, double neg.)
Satisfiable or unsatisfiable?

- \(\neg (X_1 \lor \neg (X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg (X_1 \lor \neg X_2))) \)

Unsatisfiable.

Some simplification first will make this easier to see:

\(\neg (X_1 \lor \neg (X_2 \land X_3) \lor (\neg X_1 \land X_3 \land \neg (X_1 \lor \neg X_2))) \) (original)

\[\equiv \neg X_1 \land X_2 \land X_3 \land \neg (\neg X_1 \land X_3 \land \neg (X_1 \lor \neg X_2)) \] (De Morgan, double neg.)

\[\equiv \neg X_1 \land X_2 \land X_3 \land (X_1 \lor \neg X_3 \lor X_1 \lor \neg X_2) \] (De Morgan, double neg.)
Translation

1. Domain: all human beings
 \(P(x) \): \(x \) has blue eyes
 \(Q(x) \): \(x \) has black eyes
 Statement: There exist people with blue eyes and with black eyes, but one cannot have blue and black eyes at the same time.

2. Domain: all UT student
 \(P(x) \): \(x \) is a computer science student
 \(Q(x) \): \(x \) must take 313
 Statement: \(\forall x (P(x) \rightarrow Q(x)) \)
Translation

1. Domain: all human beings

 $P(x): x$ has blue eyes
 $Q(x): x$ has black eyes

 Statement: There exist people with blue eyes and with black eyes, but one cannot have blue and black eyes at the same time.

 Answer: $\exists x P(x) \land \exists x Q(x) \land \forall x \neg(P(x) \land Q(x))$
Translation

1. Domain: all human beings
 \[P(x): x \text{ has blue eyes} \]
 \[Q(x): x \text{ has black eyes} \]
 Statement: There exist people with blue eyes and with black eyes, but one cannot have blue and black eyes at the same time.
 Answer: \[\exists x P(x) \land \exists x Q(x) \land \forall x \neg (P(x) \land Q(x)) \]

2. Domain: all UT student
 \[P(x): x \text{ is a computer science student} \]
 \[Q(x): x \text{ must take 313} \]
 Statement: \[\forall x (P(x) \rightarrow Q(x)) \]
 Answer: All computer science students in UT must take 313
Pair up activity

- Suppose B and C are disjoint. Prove $(A \times B) \cap (A \times C) = \emptyset$.
Pair up activity

• Suppose B and C are disjoint. Prove $(A \times B) \cap (A \times C) = \emptyset$.

• Sponge: Suppose $A \subseteq B \subseteq C$. Prove $C - B \subseteq C - A$.
Induction

Prove: When \(n > 1 \), Assume we have three kinds of tiles: 1 by 2 tiles, 2 by 1 tiles and 2 by 2 tiles. Prove given a \(n \) by 2 board, there are

\[
\frac{2^{n+1} + (-1)^n}{3}
\]

ways to fill it using these three kinds of tiles.
Induction

Prove: When $n > 1$, Assume we have three kinds of tiles: 1 by 2 tiles, 2 by 1 tiles and 2 by 2 tiles. Prove given a n by 2 board, there are

$$\frac{2^{n+1} + (-1)^n}{3}$$

ways to fill it using these three kinds of tiles.
Assignments for Thursday

- Modules 10 and 11