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Good Morning, Colleagues

Are there any questions?

e Applications of graphs?

e Graph of degree k colorable with k£ 4+ 1 colors

e Clever predicatel
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Logistics

e HOw was the midterm?

— I"'m quiite pleased with your grades

— | know it’s quite a challenge for those of you with less
background

— Next exam might be more difficult

e New unit: graph theory and counting

Peter Stone



How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each
ofther’s hand.
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How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each
ofther’s hand.

2. 12 couples go to a party and everyone shakes hands with
everyone except for their spouse.

3. Three groups of people go to a party. No one shakes
Nnands with anyone from the group they came with but
they all shake hands with everyone else. The sizes of the
three groups are 4, 6 and 10.
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What’s the induced subgraph?

e \ertices {vy, vo,v3} Of graph
G = ({01, VU2, U3, ”04}, {(”01, 712), (Uz, 714), (US, 714), (712, Us)})
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What’s the induced subgraph?

e \ertices {vy, vo,v3} Of graph
G = ({vi,v2,v3,v4}, {(v1, v2), (V2,v4), (V3,Va), (V2,V3)})
Answer: ({Ul, V9, 113}, {(?}1, 'UQ), (UQ, 713)}).
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Prove

e If in a graph with n > 1 vertices, all vertices have the same
neighborhood, then the neighlbborhood of all verfices is the
empty sef.
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Prove
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neighborhood, then the neighlbborhood of all verfices is the
empty sef.

1. Proof by confradiction: Assume the neighborhood of
all vertices is non-empty.

2. Then adll neighborhoods contain a vertex v, including v’s
neighborhood.
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Prove

e If in a graph with n > 1 vertices, all vertices have the same
neighborhood, then the neighlbborhood of all verfices is the
empty sef.

1. Proof by confradiction: Assume the neighborhood of
all vertices is non-empty.

2. Then adll neighborhoods contain a vertex v, including v’s
neighborhood.

3. However, this means v is its own neighbor, which means
there is self-loop.
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Prove

e If in a graph with n > 1 vertices, all vertices have the same
neighborhood, then the neighlbborhood of all verfices is the
empty sef.

1. Proof by confradiction: Assume the neighborhood of
all vertices is non-empty.

2. Then adll neighborhoods contain a vertex v, including v’s
neighborhood.

3. However, this means v is its own neighbor, which means
there is self-loop.

4, Self-loops are not allowed, so this is a contradiction.
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Possible or Impossible?

1. A simple graph with 6 vertices, whose degrees are 2, 2, 2,
3.4, 4.
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Possible or Impossible?

1. A simple graph with 6 vertices, whose degrees are 2, 2, 2,
3,4, 4.

It is not possible 1o have one vertex of odd degree.

2. A simple graph with 8 vertices, whose degrees are O, 1, 2,
3,4,5,6,7.

It is not possible To have a vertex of degree 7 and a vertex
of degree 0 in this graph.

3. A simple graph with degrees 1, 2, 2, 3.
Possible: vy, v, v3, v4. EAQES: (v1,v2), (v1,v3), (v1,v4), (V2, V3).
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same degree.
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Prove

e Every simple graph with |V| > 2 has two vertices of the
same degree.
ANS:
Assume that the graph has n vertices.
Degrees are € {0,1,...,.n— 1}

Um Department of Computer Sciences
(o
- The University of Texas at Austin Pe.l.er S'I'Oﬂe



Prove

e Every simple graph with |V| > 2 has two vertices of the
same degree.
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Prove

e Every simple graph with |V| > 2 has two vertices of the
same degree.

AnNS:
Assume that the graph has n vertices.
Degrees are € {0,1,...,.n— 1}

Can’t have a vertices with degree n-1 and 0.
Thus the vertices can have at most n-1 different degrees.
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Prove

e Every simple graph with |V| > 2 has two vertices of the
same degree.

AnNS:
Assume that the graph has n vertices.
Degrees are € {0,1,...,.n— 1}

Can’t have a vertices with degree n-1 and 0.
Thus the vertices can have at most n-1 different degrees.
Therefore at least 2 must have the same degree.
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Chromatic Number

Find the chromatic numier k, and define a valid k-coloring
for each grapnh.

o G = ({vi,v2,v3,v4}, {(v1,v2), (v1,v3), (v2,v3), (V2,v4), (V3,v4)})
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Chromatic Number

Find the chromatic numier k, and define a valid k-coloring
for each grapnh.

o G = ({Ula v2, V3, U4}7 {(Ula 02)7 (vla ’03), (027 ,03)7 (7)2, U4)7 (,037 U4)})
Chromatic number is 3, and a valid 3-coloring is v1 and v,
RED, vo BLUE, and v3 GREEN.
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Prove by Induction

e FOrn > 0, suppose n star graphs are linked in a chain, such
that there is one edge connecting some vertex in the ;"
graph with some vertex in the (i+1)!* graph for all : where
0 < i < n. Prove that the resulting graph is 2-colorable.

Peter Stone



Scheduling

e The Math Department has 6 committees that meet once
a month. How many different meeting times must be used
to guarantee that no one is scheduled to be at 2 meetings
at the same fime, if committees and their members are:
C1 = {Allen, Brooks, Marg}, C2 = {Brooks, Jones, Morton},
C3 = {Allen, Marg, Morton}, C4 = {Jones, Marg, Morton},
C5 = {Allen, Brooks}, C6 = {Brooks, Marg, Morton}.
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Scheduling

e The Math Department has 6 committees that meet once
a month. How many different meeting times must be used
to guarantee that no one is scheduled to be at 2 meetings
at the same time, if commiffees and their members are:

Cl={A
C3 =1{A
Cb5 = {Al

Ans:

len, Brooks, Marg}, C2 = {Brooks, Jones, Morton},
len, Marg, Morton}, C4 = {Jones, Marg, Morton},
en, Brooks}, C6 = {Brooks, Marg, Morton}.

We can draw a graph with C1 tfo C6 as vertices and
an edge between the vertices if they share common
elements. The answer is again the chromatic number of
the graph - 5. Only C4 and C5 do not share any common
elements.
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Challenge

Suppose for directed graph G = (V, E) that no vertex has an
iIN-degree equal to its out-degree, all in-degrees are unique,
and all out-degrees are unigue.
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with n vertices tThat has these properties.
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Challenge

Suppose for directed graph G = (V, E) that no vertex has an
IN-degree equal to its out-degree, all in-degrees are unique,
and all out-degrees are unique.Formally,

D(G) =VYv € Videg™ (v) # deg—(v)],

I(G) =Yv,u € Videg™(v) = deg™(u) — u = v]

O(G) =VYv,u € V]deg™(v) = deg™ (u) — u = v]

e Prove that for any even number n, there exists a graph
with n vertices tThat has these properties.
Define: V(G,n) = "graph G has n vertices”
Formally, prove: Vk > 0, 3GV (G, 2k) AN D(G) N I(G) AN O(G)].
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Assignments for Tuesday

e Modules 12 and 13
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