CS313H Logic, Sets, and Functions: Honors Fall 2012

Prof: Peter Stone

TA: Jacob Schrum

Proctor: Sudheesh Katkam

Department of Computer Science The University of Texas at Austin

Are there any questions?

Are there any questions?

Applications of graphs?

Are there any questions?

- Applications of graphs?
- Graph of degree k colorable with k+1 colors

Are there any questions?

- Applications of graphs?
- Graph of degree k colorable with k+1 colors
 - Clever predicate!

• How was the midterm?

- How was the midterm?
 - I'm quite pleased with your grades

- How was the midterm?
 - I'm quite pleased with your grades
 - I know it's quite a challenge for those of you with less background

- How was the midterm?
 - I'm quite pleased with your grades
 - I know it's quite a challenge for those of you with less background
 - Next exam might be more difficult

- How was the midterm?
 - I'm quite pleased with your grades
 - I know it's quite a challenge for those of you with less background
 - Next exam might be more difficult
- New unit: graph theory and counting

How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each other's hand.

How Many Handshakes Occur?

1. 12 people go to a party and everyone shakes each other's hand.

2. 12 couples go to a party and everyone shakes hands with everyone except for their spouse.

3. Three groups of people go to a party. No one shakes hands with anyone from the group they came with but they all shake hands with everyone else. The sizes of the three groups are 4, 6 and 10.

What's the induced subgraph?

• Vertices $\{v_1, v_2, v_3\}$ of graph $G = (\{v_1, v_2, v_3, v_4\}, \{(v_1, v_2), (v_2, v_4), (v_3, v_4), (v_2, v_3)\})$

What's the induced subgraph?

• Vertices $\{v_1,v_2,v_3\}$ of graph $G=(\{v_1,v_2,v_3,v_4\},\{(v_1,v_2),(v_2,v_4),(v_3,v_4),(v_2,v_3)\})$

Answer: $(\{v_1, v_2, v_3\}, \{(v_1, v_2), (v_2, v_3)\})$.

 If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.
 - 2. Then all neighborhoods contain a vertex v, including v's neighborhood.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.
 - 2. Then all neighborhoods contain a vertex v, including v's neighborhood.
 - 3. However, this means v is its own neighbor, which means there is self-loop.

- If in a graph with n > 1 vertices, all vertices have the same neighborhood, then the neighborhood of all vertices is the empty set.
 - 1. Proof by contradiction: Assume the neighborhood of all vertices is non-empty.
 - 2. Then all neighborhoods contain a vertex v, including v's neighborhood.
 - 3. However, this means v is its own neighbor, which means there is self-loop.
 - 4. Self-loops are not allowed, so this is a contradiction.

Possible or Impossible?

1. A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.

Possible or Impossible?

1. A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.

2. A simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.

3. A simple graph with degrees 1, 2, 2, 3.

Possible or Impossible?

- 1. A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.
 - It is not possible to have one vertex of odd degree.

- 2. A simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.
 - It is not possible to have a vertex of degree 7 and a vertex of degree 0 in this graph.

- 3. A simple graph with degrees 1, 2, 2, 3.
 - Possible: v_1, v_2, v_3, v_4 . Edges: $(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_3)$.

ullet Every simple graph with $|V|\geq 2$ has two vertices of the same degree.

 \bullet Every simple graph with $|V|\geq 2$ has two vertices of the same degree.

Ans:

Assume that the graph has n vertices.

 \bullet Every simple graph with $|V|\geq 2$ has two vertices of the same degree.

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

ullet Every simple graph with $|V|\geq 2$ has two vertices of the same degree.

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

Can't have a vertices with degree n-1 and 0.

ullet Every simple graph with $|V|\geq 2$ has two vertices of the same degree.

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

Can't have a vertices with degree n-1 and 0.

Thus the vertices can have at most n-1 different degrees.

ullet Every simple graph with $|V|\geq 2$ has two vertices of the same degree.

Ans:

Assume that the graph has n vertices.

Degrees are $\in \{0, 1, ..., ..n - 1\}$

Can't have a vertices with degree n-1 and 0.

Thus the vertices can have at most n-1 different degrees.

Therefore at least 2 must have the same degree.

Chromatic Number

Find the chromatic number k, and define a valid k-coloring for each graph.

•
$$G = (\{v_1, v_2, v_3, v_4\}, \{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4), (v_3, v_4)\})$$

Chromatic Number

Find the chromatic number k, and define a valid k-coloring for each graph.

• $G=(\{v_1,v_2,v_3,v_4\},\{(v_1,v_2),(v_1,v_3),(v_2,v_3),(v_2,v_4),(v_3,v_4)\})$ Chromatic number is 3, and a valid 3-coloring is v_1 and v_4 RED, v_2 BLUE, and v_3 GREEN.

Prove by Induction

• For n > 0, suppose n star graphs are linked in a chain, such that there is one edge connecting some vertex in the i^{th} graph with some vertex in the $(i+1)^{th}$ graph for all i where 0 < i < n. Prove that the resulting graph is 2-colorable.

Scheduling

• The Math Department has 6 committees that meet once a month. How many different meeting times must be used to guarantee that no one is scheduled to be at 2 meetings at the same time, if committees and their members are: C1 = {Allen, Brooks, Marg}, C2 = {Brooks, Jones, Morton}, C3 = {Allen, Marg, Morton}, C4 = {Jones, Marg, Morton}, C5 = {Allen, Brooks}, C6 = {Brooks, Marg, Morton}.

Scheduling

• The Math Department has 6 committees that meet once a month. How many different meeting times must be used to guarantee that no one is scheduled to be at 2 meetings at the same time, if committees and their members are: C1 = {Allen, Brooks, Marg}, C2 = {Brooks, Jones, Morton}, C3 = {Allen, Marg, Morton}, C4 = {Jones, Marg, Morton}, C5 = {Allen, Brooks}, C6 = {Brooks, Marg, Morton}.

Ans:

We can draw a graph with C1 to C6 as vertices and an edge between the vertices if they share common elements. The answer is again the chromatic number of the graph - 5. Only C4 and C5 do not share any common elements.

Suppose for directed graph G=(V,E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique.

Suppose for directed graph G=(V,E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally,

$$D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$$

Suppose for directed graph G=(V,E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally,

$$D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$$

$$I(G) \equiv \forall v, u \in V[deg^+(v) = deg^+(u) \rightarrow u = v]$$

Suppose for directed graph G=(V,E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally,

$$D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$$

$$I(G) \equiv \forall v, u \in V[deg^+(v) = deg^+(u) \rightarrow u = v]$$

$$O(G) \equiv \forall v, u \in V[deg^-(v) = deg^-(u) \rightarrow u = v]$$

Suppose for directed graph G=(V,E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally,

$$D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$$

$$I(G) \equiv \forall v, u \in V[deg^+(v) = deg^+(u) \rightarrow u = v]$$

$$O(G) \equiv \forall v, u \in V[deg^-(v) = deg^-(u) \rightarrow u = v]$$

 Prove that for any even number n, there exists a graph with n vertices that has these properties.

Suppose for directed graph G=(V,E) that no vertex has an in-degree equal to its out-degree, all in-degrees are unique, and all out-degrees are unique. Formally,

$$D(G) \equiv \forall v \in V[deg^+(v) \neq deg^-(v)],$$

$$I(G) \equiv \forall v, u \in V[deg^+(v) = deg^+(u) \rightarrow u = v]$$

$$O(G) \equiv \forall v, u \in V[deg^-(v) = deg^-(u) \rightarrow u = v]$$

 Prove that for any even number n, there exists a graph with n vertices that has these properties.

Define: $V(G, n) \equiv "graph G has n vertices"$

Formally, prove: $\forall k > 0, \exists G[V(G, 2k) \land D(G) \land I(G) \land O(G)].$

Assignments for Tuesday

• Modules 12 and 13