Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Need to postpone office hours Thursday
Logistics

- Need to postpone office hours Thursday
 - Available in the early afternoon
Logistics

- Need to postpone office hours Thursday
 - Available in the early afternoon
- Modules for next week coming late
Some questions

• Couldn’t come up with proof on own
Some questions

- Couldn’t come up with proof on own
 - That’s OK, as long as you understand it
Some questions

- Couldn’t come up with proof on own
 - That’s OK, as long as you understand it
 - Now that you’ve seen it, you should be able to regenerate it
Some questions

- Couldn’t come up with proof on own
 - That’s OK, as long as you understand it
 - Now that you’ve seen it, you should be able to regenerate it

- Why do bipartite graphs not need to be all connected, but trees do?
For $G = (\{a, b, c, d, e\}, \{(a, b), (e, d), (a, c), (b, c), (e, c), (d, c)\})$

1. Identify all simple paths from a to e.
Definitions

For $G = (\{a, b, c, d, e\}, \{(a, b), (e, d), (a, c), (b, c), (e, c), (d, c)\})$

1. Identify all simple paths from a to e.

2. Identify all simple circuits starting and ending at a.

3. Identify all cycles starting and ending at a.

Peter Stone
Definitions

For $G = (\{a, b, c, d, e\}, \{(a, b), (e, d), (a, c), (b, c), (e, c), (d, c)\})$

1. Identify all simple paths from a to e.
 - $(a, c, e), (a, b, c, e), (a, c, d, e), (a, b, c, d, e)$

2. Identify all simple circuits starting and ending at a.
 - $(a, b, c, a), (a, c, b, a), (a, b, c, d, e, c, a), (a, b, c, e, d, c, a),
 (a, c, e, d, c, b, a), (a, c, d, e, c, b, a)$

3. Identify all cycles starting and ending at a.
 Subset of the simple circuits: $(a, b, c, a), (a, c, b, a)$
Prove

• For a graph G, if MAX-DEGREE(G) = 3, then any simple circuit is actually a cycle.
For a graph G, if $\text{MAX-DEGREE}(G) = 3$, then any simple circuit is actually a cycle.
Proof by contradiction:
Prove

- For a graph G, if $\text{MAX-DEGREE}(G) = 3$, then any simple circuit is actually a cycle.

Proof by contradiction:
1. Assume the simple circuit $(s, ..., s)$ is not a cycle.
• For a graph G, if MAX-DEGREE(G) = 3, then any simple circuit is actually a cycle.
Proof by contradiction:
1. Assume the simple circuit \((s, \ldots, s)\) is not a cycle.
2. Then there must be a repeated vertex \(v\) so the circuit is \((s, \ldots, v, \ldots, v, \ldots, s)\)
Prove

For a graph G, if $\text{MAX-DEGREE}(G) = 3$, then any simple circuit is actually a cycle.

Proof by contradiction:
1. Assume the simple circuit (s, \ldots, s) is not a cycle.
2. Then there must be a repeated vertex v so the circuit is $(s, \ldots, v, \ldots, v, \ldots, s)$
3. Since the circuit is "simple", no repeated edges.
For a graph G, if MAX-DEGREE(G) = 3, then any simple circuit is actually a cycle.

Proof by contradiction:
1. Assume the simple circuit \((s, \ldots, s)\) is not a cycle.
2. Then there must be a repeated vertex \(v\) so the circuit is \((s, \ldots, v, \ldots, v, \ldots, s)\)
3. Since the circuit is "simple", no repeated edges.
4. Therefore the vertices preceding and following \(v\) in each case must be distinct.
Prove

• For a graph G, if $\text{MAX-DEGREE}(G) = 3$, then any simple circuit is actually a cycle.

Proof by contradiction:
1. Assume the simple circuit (s, \ldots, s) is not a cycle.
2. Then there must be a repeated vertex v so the circuit is $(s, \ldots, v, \ldots, v, \ldots, s)$
3. Since the circuit is "simple", no repeated edges.
4. Therefore the vertices preceding and following v in each case must be distinct.
5. So the circuit is $(s, \ldots, a, v, b, \ldots, x, v, y, \ldots, s)$ (a or y could equal s, but not both)
Prove

For a graph G, if MAX-DEGREE(G) = 3, then any simple circuit is actually a cycle.
Proof by contradiction:
1. Assume the simple circuit \((s, \ldots, s)\) is not a cycle.
2. Then there must be a repeated vertex \(v\) so the circuit is \((s, \ldots, v, \ldots, v, \ldots, s)\).
3. Since the circuit is "simple", no repeated edges.
4. Therefore the vertices preceding and following \(v\) in each case must be distinct.
5. So the circuit is \((s, \ldots, a, v, b, \ldots, x, v, y, \ldots, s)\) (\(a\) or \(y\) could equal \(s\), but not both).
6. Then the degree of \(v\) is at least 4.
Prove

For a graph G, if $\text{MAX-DEGREE}(G) = 3$, then any simple circuit is actually a cycle.

Proof by contradiction:
1. Assume the simple circuit $(s, ..., s)$ is not a cycle.
2. Then there must be a repeated vertex v so the circuit is $(s, ..., v, ..., v, ..., s)$
3. Since the circuit is "simple", no repeated edges.
4. Therefore the vertices preceding and following v in each case must be distinct.
5. So the circuit is $(s, ..., a, v, b, ..., x, v, y, ..., s)$ (a or y could equal s, but not both)
6. Then the degree of v is at least 4.
7. $4 > 3 = \text{MAX-DEGREE}(G)$ is a contradiction.
Find a Counterexample

Suppose all vertices of a graph G have been colored. Now suppose that all cycles are found, and it turns out that for each cycle $(v_1, v_2, ..., v_n, v_1)$ that $v_1, ..., v_n$ all have distinct colors. In this case, the coloring must be valid.
Find a Counterexample

Suppose all vertices of a graph G have been colored. Now suppose that all cycles are found, and it turns out that for each cycle $(v_1, v_2, ..., v_n, v_1)$ that $v_1, ..., v_n$ all have distinct colors. In this case, the coloring must be valid.

Create a counterexample using a vertex that doesn’t appear in ANY cycles. Take the graph $G = (\{a, b, c, d\}, \{(a, b), (b, c), (c, a), (a, d)\})$. Then the cycles are $(a, b, c, a), (b, c, a, b), (c, a, b, c)$, none of which contain d, so assign the colors: a:RED, b:BLUE, c:GREEN, d:RED. Colors are distinct within each cycle, but the color of d clashes with a.
1. Prove that a graph with exactly two vertices with odd degree must contain a path between these two vertices.
1. Prove that a graph with exactly two vertices with odd degree must contain a path between these two vertices.

2. Prove that every graph with vertices that each have degree at least 2 contains a cycle.
1. Prove all trees are bipartite graphs.
Bipartite Graphs, Trees

1. Prove all trees are bipartite graphs.

2. In a 2-colored Tree with \(n \) vertices, what is the maximum number of vertices that can be one color?
1. Prove all trees are bipartite graphs.

2. In a 2-colored Tree with n vertices, what is the maximum number of vertices that can be one color?

3. Prove that adding an edge to any Tree will create a cycle.
Bipartite Graphs, Trees

1. Prove all trees are bipartite graphs.
 - \(G \) is a Tree
 - \(\Leftrightarrow \) \(G \) is connected \(\land \) \(G \) has no cycles
 - \(\Rightarrow \) \(G \) has no odd length cycles
 - \(\Leftrightarrow \) \(G \) is bipartite

2. In a 2-colored Tree with \(n \) vertices, what is the maximum number of vertices that can be one color?
 - \(n - 1 \) vertices can have the same color in a star graph, which is a Tree.

3. Prove that adding an edge to any Tree will create a cycle.
Bipartite Graphs

If G is a bipartite graph and the bipartition of G is X and Y, then

$$\sum_{v \in X} \deg(v) = \sum_{v \in Y} \deg(v)$$
Bipartite Graphs

If G is a bipartite graph and the bipartition of G is X and Y, then

$$\sum_{v \in X} \deg(v) = \sum_{v \in Y} \deg(v)$$

Ans:

Proof by induction on number of edges:

$P(n) = \text{If } G \text{ is a bipartite graph with } n \text{ edges and the bipartition of } G \text{ is } X \text{ and } Y, \text{ then } \sum_{v \in X} \deg(v) = \sum_{v \in Y} \deg(v)$

Base Case: $n = 1$. No. of edges between X and Y is 1.

$$\sum_{v \in X} \deg(v) = 1 = \sum_{v \in Y} \deg(v).$$

Inductive Case: Assume $P(n)$ is true. Remove one edge e between X and Y. The resulting graph has n edges, so we can apply the inductive hypothesis. Putting e back adds exactly 1 to both $\sum_{v \in X} \deg(v)$ and $\sum_{v \in Y} \deg(v)$, so we have $P(n+1) = \text{true}$. Hence proved.
Prove that if G with n ($n > 1$) vertices is connected and has $n - 1$ edges, then G is a Tree.
Prove that if G with n ($n > 1$) vertices is connected and has $n - 1$ edges, then G is a Tree.

Proof by induction on the number of vertices
Assignments for Thursday

- Module 14