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Some questions

• Couldn’t come up with proof on own

− That’s OK, as long as you understand it
− Now that you’ve seen it, you should be able to

regenerate it

• Why do bipartite graphs not need to be all connected,
but trees do?

Peter Stone
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Definitions

For G = ({a, b, c, d, e}, {(a, b), (e, d), (a, c), (b, c), (e, c), (d, c)})

1. Identify all simple paths from a to e.
(a,c,e), (a,b,c,e), (a,c,d,e), (a,b,c,d,e)

2. Identify all simple circuits starting and ending at a.
(a,b,c,a), (a,c,b,a), (a,b,c,d,e,c,a), (a,b,c,e,d,c,a),
(a,c,e,d,c,b,a), (a,c,d,e,c,b,a)

3. Identify all cycles starting and ending at a.
Subset of the simple circuits: (a,b,c,a), (a,c,b,a)
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Prove
• For a graph G, if MAX-DEGREE(G) = 3, then any simple

circuit is actually a cycle.
Proof by contradiction:
1. Assume the simple circuit (s, ..., s) is not a cycle.
2. Then there must be a repeated vertex v so the circuit is
(s, ..., v, ..., v, ..., s)
3. Since the circuit is "simple", no repeated edges.
4. Therefore the vertices preceding and following v in
each case must be distinct.
5. So the circuit is (s, ..., a, v, b, ..., x, v, y, ..., s) (a or y could
equal s, but not both)
6. Then the degree of v is at least 4.
7. 4 > 3 =MAX-DEGREE(G) is a contradiction.

Peter Stone



Find a Counterexample

Suppose all vertices of a graph G have been colored. Now
suppose that all cycles are found, and it turns out that
for each cycle (v1, v2, ..., vn, v1) that v1, ..., vn all have distinct
colors. In this case, the coloring must be valid.
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Find a Counterexample

Suppose all vertices of a graph G have been colored. Now
suppose that all cycles are found, and it turns out that
for each cycle (v1, v2, ..., vn, v1) that v1, ..., vn all have distinct
colors. In this case, the coloring must be valid.

Create a counterexample using a vertex that doesn’t
appear in ANY cycles. Take the graph
G = ({a, b, c, d}, {(a, b), (b, c), (c, a), (a, d)}).
Then the cycles are (a, b, c, a), (b, c, a, b), (c, a, b, c), none of
which contain d, so assign the colors: a:RED, b:BLUE,
c:GREEN, d:RED. Colors are distinct within each cycle, but
the color of d clashes with a.

Peter Stone
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Solve Alone then Pair Up

1. Prove that a graph with exactly two vertices with odd
degree must contain a path between these two vertices.

2. Prove that every graph with vertices that each have
degree at least 2 contains a cycle.

Peter Stone
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Bipartite Graphs, Trees

1. Prove all trees are bipartite graphs.
G is a Tree
⇔ G is connected ∧ G has no cycles
⇒ G has no odd length cycles
⇔ G is bipartite

2. In a 2-colored Tree with n vertices, what is the maximum
number of vertices that can be one color?
n − 1 vertices can have the same color in a star graph,
which is a Tree.

3. Prove that adding an edge to any Tree will create a cycle.

Peter Stone



Bipartite Graphs
If G is a bipartite graph and the bipartition of G is X and Y,
then∑

v∈X deg(v) =
∑

v∈Y deg(v)
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Bipartite Graphs
If G is a bipartite graph and the bipartition of G is X and Y,
then∑

v∈X deg(v) =
∑

v∈Y deg(v)
Ans:
Proof by induction on number of edges:
P(n) = If G is a bipartite graph with n edges and the
bipartition of G is X and Y, then

∑
v∈X deg(v) =

∑
v∈Y deg(v)

Base Case: n = 1. No. of edges between X and Y is 1.∑
v∈X deg(v) = 1 =

∑
v∈Y deg(v).

Inductive Case: Assume P(n) is true. Remove one edge e
between X and Y. The resulting graph has n edges, so we
can apply the inductive hypothesis. Putting e back adds
exactly 1 to both

∑
v∈X deg(v) and

∑
v∈Y deg(v), so we have

P(n+1) = true. Hence proved.
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Trees

Prove that if G with n (n > 1) vertices is connected and has
n− 1 edges, then G is a Tree.
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Prove that if G with n (n > 1) vertices is connected and has
n− 1 edges, then G is a Tree.
Proof by induction on the number of vertices
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Assignments for Thursday

• Module 14

Peter Stone


