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Logistics

• Class survey

− End of class too rushed
− Homeworks and quest grading too harsh

• Need to postpone office hours Thursday

− Available 1:30–2:30

• Homework 5 due at the start of class on Tuesday

• 2 more graph modules on Tuesday

− Apologies for imperfect modules
− Honors material modules have harder questions

Peter Stone
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Quiz (closed notes - 7 minutes)

• Prove that for a graph G, if MAX-DEGREE(G) = 3, then any
simple circuit is actually a cycle.
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Bipartite graphs

• If G is a connected, bipartite graph, prove that for every
edge (u, v), there doesn’t exist any vertex s such that
dist(s, u) = dist(s, v) where dist(x, y) is the length of the
shortest path between x and y.
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Planar Graph Applications

• Electronic circuit design (so it can all fit on a single board
without crossing wires)

• Design of road networks (to avoid need for underpasses
and overpasses)

• Shortest path problems

• My own research (I’ll try to show you on Tuesday)

Peter Stone
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4-color Theorem

• Any planar graph can be colored with 4 colors (chromatic
number is ≤ 4

• Conjectured in 1852

• Proven in 1976 – first major theorem proven using a
computer!

• Won’t make you prove it on a test. (!)

• But today, we’ll prove the 6-color theorem

• For Tuesday, you’ll see how to prove the 5-color theorem

Peter Stone



6-Color Theorem

• Show that every planar graph has a vertex of degree at
most 5.
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6-Color Theorem

• Show that every planar graph has a vertex of degree at
most 5.

• Prove that every planar graph is 6-colorable

Peter Stone



Assignments for Thursday

• Modules 14.1 and 14.2

• Homework due at the start of class

Peter Stone


