CS313H Logic, Sets, and Functions: Honors Fall 2012

Prof: Peter Stone

TA: Jacob Schrum

Proctor: Sudheesh Katkam

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

Logistics

• Don't shun the book

Logistics

- Don't shun the book
- Module C1 is longer than most

 Homeworks are deliberately harder because you have more time (mostly same as non-honors)

- Homeworks are deliberately harder because you have more time (mostly same as non-honors)
- In-class problems vary in difficulty we spend different amounts of time on them

- Homeworks are deliberately harder because you have more time (mostly same as non-honors)
- In-class problems vary in difficulty we spend different amounts of time on them
- "Dismissing" things to Piazza time management issue

- Homeworks are deliberately harder because you have more time (mostly same as non-honors)
- In-class problems vary in difficulty we spend different amounts of time on them
- "Dismissing" things to Piazza time management issue
- "Advantage" of students who have seen material before should be diminishing

- Homeworks are deliberately harder because you have more time (mostly same as non-honors)
- In-class problems vary in difficulty we spend different amounts of time on them
- "Dismissing" things to Piazza time management issue
- "Advantage" of students who have seen material before should be diminishing
- Manage your sleep and time

• "I don't like the way we start so abruptly with "Good morning... Any questions?" Often I don't have a list of specific questions in mind but if we spent a few minutes briefly overviewing the new material we were supposed to have picked up in the module, the context would bring up questions."

Some questions

• 5-color theorem better as induction

Some questions

- 5-color theorem better as induction
 - Removing vertex of **min** degree (not max as on webpage)

Some questions

- 5-color theorem better as induction
 - Removing vertex of **min** degree (not max as on webpage)
- Modern day Königsberg any better? (Nick Walther)

Eulerian and Hamiltonian Graphs

1. Eulerian Path?

Eulerian and Hamiltonian Graphs

- 1. Eulerian Path?
- 2. Eulerian Circuit?
- 3. Hamiltonian Path?
- 4. Hamiltonian Circuit?

If every vertex in a connected graph has even degree, then the graph is Eulerian.

 Module gave a "proof" that included "continue until you run out of edges."

If every vertex in a connected graph has even degree, then the graph is Eulerian.

- Module gave a "proof" that included "continue until you run out of edges."
- Lets make it more formal

If every vertex in a connected graph has even degree, then the graph is Eulerian.

- Module gave a "proof" that included "continue until you run out of edges."
- Lets make it more formal
- Induction on the number of vertices

If every vertex in a connected graph has even degree, then the graph is Eulerian.

- Module gave a "proof" that included "continue until you run out of edges."
- Lets make it more formal
- Induction on the number of vertices
- Induction on the number of edges

If every vertex in a connected graph has even degree, then the graph is Eulerian.

- Module gave a "proof" that included "continue until you run out of edges."
- Lets make it more formal
- Induction on the number of vertices
- Induction on the number of edges
- Consider the longest simple path $W=v_0,...,v_r$ (there are a finite number of these paths, so the longest one certainly exists; if it's not unique pick any old one). Prove that W is an Eulerian circuit.

Assignments for Thursday

• Module C1