CS313H Logic, Sets, and Functions: Honors Fall 2012

Prof: Peter Stone

TA: Jacob Schrum

Proctor: Sudheesh Katkam

Department of Computer Science The University of Texas at Austin

Good Morning, Colleagues

Good Morning, Colleagues

Are there any questions?

Logistics

Have you figured out the poker hands?

Some questions

- Why does Pascal's triangle work?
- A few more facts

Counting with Repetitions

 How many ways are there to select 5 bills from 100,50,20,10,5,2,1? (You can select any type as many times as you want)

Counting with Repetitions

- How many ways are there to select 5 bills from 100,50,20,10,5,2,1? (You can select any type as many times as you want)
- How many non negative integer solutions are there to p+q+r<11?

• For any set of 100 distinct integers, if you divide each integer by 67 and record the remainder (i.e. compute x = 0.05), then at least 2 remainders are the same.

- For any set of 100 distinct integers, if you divide each integer by 67 and record the remainder (i.e. compute x = 0.05), then at least 2 remainders are the same.
 - If $A \subset \mathbb{N}$, |A| = 100 then $\exists x, y \in A$, such that $x \neq y, x \mod 67 = y \mod 67$.

- For any set of 100 distinct integers, if you divide each integer by 67 and record the remainder (i.e. compute x = 0.00), then at least 2 remainders are the same.
 - If $A \subset \mathbb{N}$, |A| = 100 then $\exists x, y \in A$, such that $x \neq y, x \mod 67 = y \mod 67$.
- Consider a set of any 10 distinct positive numbers less than 100. Prove that there must exist 2 different subsets (of this set of 10) whose sum is the same.

- For any set of 100 distinct integers, if you divide each integer by 67 and record the remainder (i.e. compute x = 0.05 mod 67), then at least 2 remainders are the same.
 - If $A \subset \mathbb{N}$, |A| = 100 then $\exists x, y \in A$, such that $x \neq y, x \mod 67 = y \mod 67$.
- Consider a set of any 10 distinct positive numbers less than 100. Prove that there must exist 2 different subsets (of this set of 10) whose sum is the same.
- (HARD) In a month with 30 days, a baseball team will play 45 games. It must also play at least one game on each day. Show that there will be a period of consecutive days where exactly 14 games are played.

• What is the coefficient of METYS in $(M+E+T+Y+S)^5$?

- What is the coefficient of METYS in $(M+E+T+Y+S)^5$?
- What is the coefficient of $METYS^3$ in $(M+E+T+Y+S)^7$?

- What is the coefficient of METYS in $(M+E+T+Y+S)^5$?
- What is the coefficient of $METYS^3$ in $(M+E+T+Y+S)^7$?
 - How many ways are there to arrange the letters of the word SYSTEMS?)

- What is the coefficient of METYS in $(M+E+T+Y+S)^5$?
- What is the coefficient of $METYS^3$ in $(M+E+T+Y+S)^7$?
 - (How many ways are there to arrange the letters of the word SYSTEMS?)
- What is the coefficient of A^3BN^2 in $(A+B+N)^6$?

- What is the coefficient of METYS in $(M+E+T+Y+S)^5$?
- What is the coefficient of $METYS^3$ in $(M+E+T+Y+S)^7$?
 - (How many ways are there to arrange the letters of the word SYSTEMS?)
- What is the coefficient of A^3BN^2 in $(A+B+N)^6$?
 - (How many ways are there to arrange the letters of the word BANANA?)

- What is the coefficient of METYS in $(M+E+T+Y+S)^5$?
- What is the coefficient of $METYS^3$ in $(M+E+T+Y+S)^7$?
 - (How many ways are there to arrange the letters of the word SYSTEMS?)
- What is the coefficient of A^3BN^2 in $(A+B+N)^6$?
 - (How many ways are there to arrange the letters of the word BANANA?)
- Coefficient of $x_1^{r_1}x_2^{r_2}\cdots x_k^{r_k}$ in $(x_1+x_2+\cdots x_k)^n=$

- What is the coefficient of METYS in $(M+E+T+Y+S)^5$?
- What is the coefficient of $METYS^3$ in $(M+E+T+Y+S)^7$?
 - (How many ways are there to arrange the letters of the word SYSTEMS?)
- What is the coefficient of A^3BN^2 in $(A+B+N)^6$?
 - (How many ways are there to arrange the letters of the word BANANA?)
- Coefficient of $x_1^{r_1}x_2^{r_2}\cdots x_k^{r_k}$ in $(x_1+x_2+\cdots x_k)^n=\frac{n!}{r_1!r_2!\cdots r_n!}$

Recurrences

- I can climb up stairs by taking either one stair or two stairs at a time. Let a_n be the number of ways I can climb n stairs. Find the recurrence relationship for a_n .
- Given recurrence relationship $a_n = 2a_{n-1} + 1$, $n \ge 2$ and initial condition $a_1 = 1$. Prove that when $n \ge 1$, $a_n = 2^n 1$.