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5 base cases?
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a0 = 4, a1 = 3, and an = 3an−1 + 4an−2.
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• Find closed form solution for
a0 = 4, a1 = 3, and an = 3an−1 + 4an−2.

• Find closed form solution for
a0 = 5, a1 = 2, and an = −10an−1 − 25an−2.
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A Generalization

• Find closed form solution for
T0 = 1, T1 = 1, T2 = 2, and Tn = −2Tn−1 + Tn−2 + 2Tn−3

The characteristic polynomial is:
r3 + 2r2 − r − 2 = (r + 1)(r − 1)(r + 2)
So the roots are r1 = −1, r2 = 1, r3 = −2
Solution form is:
Tn = α(−1)n + β(1)n + γ(−2)n = α(−1)n + β + γ(−2)n

Solving for initial conditions, the final recurrence is:
Tn = −(3/6)(−1)n + (7/6) + (1/3)(−2)n
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An Application

• Someone deposits $10,000 in a savings account at a bank
yielding 5% per year with interest being compounded
annually. How much money will be in the account after
30 years?
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An Application

• Someone deposits $10,000 in a savings account at a bank
yielding 5% per year with interest being compounded
annually. How much money will be in the account after
30 years?
Let Pn denote the amount in the account after n years.
Then, the following recurrence relation:
Pn = Pn−1 + 0.05Pn−1 = 1.05Pn−1

Initial condition is P0 = 10,000
P1 = 1.05P0 P2 = 1.05P1 = (1.05)2P0

P3 = 1.05P2 = (1.05)3P0 . . . Pn = 1.05Pn−1 = (1.05)nP0

We can now find P30 under initial condition P0 = 10,000.
P30 = (1.05)3010,000 = $43,219.42

Peter Stone



More Difficult

• Let ABCDEFGH be a regular octagon of side length 1,
and O be the center of the octagon. In addition to the
sides of the octagon, line segments are drawn from O to
each vertex, making a total of 16 line segments. Let an be
the number of paths (not necessarily simple) of length n

along these line segments that start at O and terminate
at O. Give a close form solution of an.
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Solution
Let bn be the number of path of length n that start at O and
terminate at A (bn also works for BCDEFGH). Since for the
first step, we need move to one of the 8 vertices. Then we
get the recurrence relationship that

an = 8bn−1

For bn, consider the last step, it can be from its two adjacent
vertices or from the center O. Thus we have

bn = 2bn−1 + an−1
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Substituting bn by an+1/8 we get

an+1 − 2an − 8an−1 = 0

For initial condition, we have a0 = 1 and a1 = 0. The
characteristic polynomial is

x2 − 2x− 8

which has roots of x = 4 and x = −2. Thus the solution of the
homogeneous recurrence relationship is in form

an = α(4)n + β(−2)n
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Using initial condition, we have

a0 = 1 = α+ β

a1 = 0 = (4)α+ (−2)β

Thus we have and α = 1
3 and β = 2

3 and the close form
solution is

an =
1
3
4n +

2
3
(−2)n
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