
Planning Problems

Want a sequence of actions to turn a start state into a goal 
state

Unlike generic search, states and actions have internal 
structure, which allows better search methods

A

C

B

A

C

B

This slide deck courtesy of Dan Klein at UC Berkeley



State Space

Representation
States described by propositions or ground predicates
Sparse encoding (database semantics): all unstated 

literals are false
Unique names: each object has its own single symbol

A

C

B

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)



Actions

A

C

B

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

ACTION: Move(b,x,y)
  PRECONDITIONS: On(b,x), Clear(b), Clear(y)
  POSTCONDITIONS: On(b,y), Clear(x)
       On(b,x), Clear(y)

ACTION: Move(C,A,Table)
  PRECONDITIONS: On(C,A), Clear(C), Clear(Table)
  POSTCONDITIONS: On(C,Table), Clear(A)
       On(C,A), Clear(Table)



Actions

A

C

B

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

ACTION: MoveToBlock(b,x,y)
  PRECONDITIONS: On(b,x), Clear(b), Clear(y),

      Block(b), Block(y), (bx), (by), (xy) 
  POSTCONDITIONS: On(b,y), Clear(x)
       On(b,x), Clear(y)

ACTION: MoveToTable(b,x)
  PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (bx) 
  POSTCONDITIONS: On(b,Table), Clear(x)
       On(b,x)



Start and Goal States

Important: goal 
satisfied by any 
state which 
entails goal list

A

C

B

A

C

B

Start State Goal State

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)
…

On(B, C)
On(A, B)

[MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]



Planning Problems

A

C

B

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

ACTION: MoveToTable(b,x)
  PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (bx) 
  POSTCONDITIONS: On(b,Table), Clear(x)
       On(b,x)

Sparse encoding, 
but complete 

state spec

Action schema, 
instantiates to give 

specific ground actions

A

C

B

Goal

On(B, C)
On(A, B)

Set of goal states, 
only requirements 

specified (think 
unary constraints)

Which goal first?



Practice

Problem 10.2:  “Applicable”
Problem 10.3a,b:  Representation
     Where do they come from?
     Could they be learned?



Kinds of Plans

A

C

B

Start State

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)
…

MoveToTable(C,A) > Move(B,Table,C) > Move(A,Table,B)

Sequential Plan

MoveToTable(C,A)
> Move(A,Table,B)]

Move(B,Table,C)

Partial-Order Plan



Forward Search

A

C

B

Start State

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)
…

Move
To

Ta
ble(C

,A
)

MoveToBlock(C,A,B)

MoveToBlock(B,Table,C)

Applicable actions



Backward Search

A

C

B

Goal State

On(B, C)
On(A, B)

Relevant actions

MoveToBlock(A,Table,B)

ACTION: MoveToBlock(b,x,y)
  PRECONDITIONS: On(b,x), Clear(b), Clear(y),
                  Block(b), Block(y), (bx), (by), 
(xy) 
  POSTCONDITIONS: On(b,y), Clear(x)
                  On(b,x), Clear(y)

MoveToBlock(A,x’,B)





Heuristics: Ignore Preconditions
Relax problem by ignoring preconditions

Can drop all or just some preconditions

Can solve in closed form or with set-cover methods



Heuristics: No-Delete
Relax problem by not deleting falsified literals

Can’t undo progress, so solve with hill-climbing (non-admissible)

A

C

B

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

ACTION: MoveToBlock(b,x,y)
  PRECONDITIONS: On(b,x), Clear(b), Clear(y),

      Block(b), Block(y), (bx), (by), (xy) 
  POSTCONDITIONS: On(b,y), Clear(x)
       On(b,x), Clear(y)



Heuristics: Independent Goals

Independent subgoals?
Partition goal literals

Find plans for each subset

cost(all) < cost(any)?

cost(all) < sum-cost(each)?

A

C

B

Goal State

On(B, C)
On(A, B)

On(A, B) On(B, C)





Planning “Tree”
Start:  HaveCake

Goal:  AteCake, HaveCake

Action:  Eat
Pre: HaveCake
Add: AteCake
Del: HaveCake

Action:  Bake
Pre: HaveCake
Add: HaveCake

Have=T,
Ate=F

Have=F, 
Ate=T

{Eat} {}

Have=T, 
Ate=F

Have=T, 
Ate=T

{Bake} {}

Have=F, 
Ate=T

Have=F, 
Ate=T

{Eat}

Have=T, 
Ate=F

{}



Reachable State Sets

Have=T,
Ate=F

Have=F, 
Ate=T

{Eat} {}

Have=T, 
Ate=F

Have=T, 
Ate=T

{Bake} {}

Have=F, 
Ate=T

Have=F, 
Ate=T

{Eat}

Have=T, 
Ate=F

{}

Have=T,
Ate=F

Have=T,
Ate=F

Have=F, 
Ate=T

Have=T, 
Ate=T

Have=F, 
Ate=T

Have=T, 
Ate=F



Approximate Reachable Sets

Have=T,
Ate=F

Have=T,
Ate=F

Have=F, 
Ate=T

Have=T, 
Ate=T

Have=F, 
Ate=T

Have=T, 
Ate=F

Have={T},
Ate={F}

Have={T,F}, 
Ate={T,F}

Have={T,F}, 
Ate={T,F}

(Have, Ate) not (T,T)
(Have, Ate) not (F,F)

(Have,Ate) not (F,F)



Planning Graphs
Start:  HaveCake

Goal:  AteCake, HaveCake

Action:  Eat
Pre: HaveCake
Add: AteCake
Del: HaveCake

Action:  Bake
Pre: HaveCake
Add: HaveCake

S0

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A0 S1



Mutual Exclusion (Mutex)

S0

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A0 S1

NEGATION
Literals and 
their negations 
can’t be true at 
the same time

 P

 P



Mutual Exclusion (Mutex)

S0

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A0 S1

INCONSISTENT 
EFFECTS
An effect of one 
negates the 
effect of the other



Mutual Exclusion (Mutex)

S0

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A0 S1

INCONSISTENT 
SUPPORT
All pairs of actions 
that achieve two 
literals are mutex



Planning Graph

S1

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A1 S2

 HaveCake

   AteCake

Bake

S0

HaveCake

Eat

 AteCake

A0



Mutual Exclusion (Mutex)

COMPETITION
Preconditions are 
mutex; cannot 
both hold

INCONSISTENT EFFECTS
An effect of one negates the 
effect of the other

S1

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A1 S2

 HaveCake

   AteCake

Bake



Mutual Exclusion (Mutex)

INTERFERENCE
One deletes a 
precondition of 
the other

S1

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A1 S2

 HaveCake

   AteCake

Bake

Sell



Planning Graph

S1

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A1 S2

 HaveCake

   AteCake

Bake

S0

HaveCake

Eat

 AteCake

A0



Observation 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B



Observation 2

Actions monotonically increase
(if they applied before, they still do)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B



Observation 3

Proposition mutex relationships monotonically decrease

p

q

r

…

A

p

q

r

…

p

q

r

…



Observation 4

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A



Observation 5

Claim: planning graph “levels off”
After some time k all levels are identical
Because it’s a finite space, the set of literals cannot increase 

indefinitely, nor can the mutexes decrease indefinitely

Claim: if goal literal never appears, or goal literals never 
become non-mutex, no plan exists
If a plan existed, it would eventually achieve all goal literals (and 

remove goal mutexes – less obvious)
Converse not true: goal literals all appearing non-mutex does not 

imply a plan exists



Heuristics: Level Costs
Planning graphs enable powerful heuristics

Level cost of a literal is the smallest S in which it appears
Max-level: goal cannot be realized before largest goal conjunct 

level cost (admissible)
Sum-level: if subgoals are independent, goal cannot be realized 

faster than the sum of goal conjunct level costs (not admissible)
Set-level: goal cannot be realized before all conjuncts are non-

mutex (admissible)

S1

HaveCake

Eat

 AteCake

HaveCake

 HaveCake

 AteCake

   AteCake

A1 S2

 HaveCake

   AteCake

Bake

S0

HaveCake

Eat

 AteCake

A0



Graphplan directly extracts plans from a planning graph
Graphplan searches for layered plans (often called parallel plans)

More general than totally-ordered plans, less general than partially-
ordered plans

A layered plan is a sequence of sets of actions
actions in the same set must be compatible
all sequential orderings of compatible actions gives same result

?
D

A
B

C D
A
B

C

move(A,B,TABLE)
move(C,D,TABLE)

move(B,TABLE,A)
move(D,TABLE,C)

;

Layered Plan: (a two layer plan)

Graphplan



Solution Extraction: Backward Search

Search problem:
  Start state: goal set at last level
  Actions: conflict-free ways of
     achieving the current goal set
  Terminal test: at S0 with goal set 
     entailed by initial planning state

Note: may need to start much 
deeper than the leveling-off point!

Caching, good ordering is 
important





Scheduling

In real planning problems, actions 
take time, resources
Actions have a duration (time to 

completion, e.g. building)

Actions can consume (or produce) 
resources (or both)

Resources generally limited (e.g. 
minerals, SCVs)

Simple case: known (partial) plan, 
just need to schedule

Even simpler: no resources, just 
ordering and duration

JOBS
[AddEngine1 < AddWheels1 < Inspect1]
[AddEngine2 < AddWheels2 < Inspect2]

RESOURCES
EngineHoists (1)
WheelStations (1)

Inspectors (2)

ACTIONS
AddEngine1: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheels1: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)

Inspect1: DUR=10, USE=Inspectors(1)
Inspect2: DUR=10, USE=Inspectors(1)



Resource-Free Scheduling

How to minimize total time?

Easy: schedule an action as soon as 
its parents are completed

Result:

JOBS
[AddEngine1 < AddWheels1 < Inspect1]
[AddEngine2 < AddWheels2 < Inspect2]

RESOURCES
EngineHoists (1)
WheelStations (1)

Inspectors (2)

ACTIONS
AddEngine1: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheels1: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)

Inspect1: DUR=10, USE=Inspectors(1)
Inspect2: DUR=10, USE=Inspectors(1)

Start

Engine1
30

Engine2
60

Wheel1
30

Wheel2
15

Insp1
10

Insp2
10

End



Resource-Free Scheduling

Note there is always a critical path

All other actions have slack

Can compute slack by computing 
latest start times

Result:

JOBS
[AddEngine1 < AddWheels1 < Inspect1]
[AddEngine2 < AddWheels2 < Inspect2]

RESOURCES
EngineHoists (1)
WheelStations (1)

Inspectors (2)

ACTIONS
AddEngine1: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheels1: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)

Inspect1: DUR=10, USE=Inspectors(1)
Inspect2 DUR=10, USE=Inspectors(1)

Start

Engine1
30

Engine2
60

Wheel1
30

Wheel2
15

Insp1
10

Insp2
10

End

0 30 60

0

0 60 75

85



Adding Resources
For now: consider only released (non-consumed) resources

View start times as variables in a CSP

Before: conjunctive linear constraints

Now: disjunctive constraints (competition)

In general, no efficient method for solving optimally



Adding Resources

One greedy approach: min slack algorithm

Compute ES, LS windows for all actions

Consider actions which have all preconditions scheduled

Pick the one with least slack

Schedule it as early as possible

Update ES, LS windows (recurrences now must avoid 
reservations)



Resource Management

Complications:
Some actions need to happen at certain times

Consumption and production of resources

Planning and scheduling generally interact


	Planning Problems
	State Space
	Actions
	Slide 4
	Start and Goal States
	Slide 6
	Practice
	Kinds of Plans
	Forward Search
	Backward Search
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Planning Graphs
	Mutual Exclusion (Mutex)
	Slide 21
	Slide 22
	Planning Graph
	Slide 24
	Slide 25
	Slide 26
	Observation 1
	Observation 2
	Observation 3
	Observation 4
	Observation 5
	Heuristics: Level Costs
	Slide 33
	Solution Extraction: Backward Search
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

