Logistics

• Late assignments accepted until Tuesday (12/12)

• Final: Monday Dec. 18th, 2pm-5pm
 – Open notes - handwritten (2 pages)
 – No books, no printouts, no electronics
Final Exam

- Monday Dec. 18th, 2pm-5pm
Final Exam

- Monday Dec. 18th, 2pm-5pm
- TAs and I will proctor (I may need to leave for part in the middle)
Final Exam

- Monday Dec. 18th, 2pm-5pm
- TAs and I will proctor (I may need to leave for part in the middle)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
Final Exam

- Monday Dec. 18th, 2pm-5pm

- TAs and I will proctor (I may need to leave for part in the middle)

- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning

- Striving for similar difficulty to midterm
Final Exam

- Monday Dec. 18th, 2pm-5pm
- TAs and I will proctor (I may need to leave for part in the middle)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1 hour and 15 minutes
Final Exam

- Monday Dec. 18th, 2pm-5pm
- TAs and I will proctor (I may need to leave for part in the middle)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1 hour and 15 minutes
- Samples - Berkeley exams
Would you have rather been born 100 years earlier or 100 years later?
Question

- Does it matter to you if our “descendants” aren’t human?
Question

- If an AI technology runs amok, who is responsible?
Question

- If an AI technology runs amok, who is responsible?
- Are there some types of research we shouldn’t do?
Can computers perfectly simulate a human’s decision-making (weak AI)?
Can computers perfectly simulate a human’s decision-making (weak AI)?

Will computers ever be better than people at everything?
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 – Find an optimal plan (or solution)
 – Best thing to do from the current state
 – Know transition and cost (reward) functions
 – Either execute complete solution (deterministic) or search again at every step
 – **Know current state**

• **Next:** MDPs —
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
- **Next**: MDPs — towards reinforcement learning
Course Recap

• **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

• **Next**: MDPs — towards reinforcement learning
 - Still know transition and reward function
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 – Find an optimal plan (or solution)
 – Best thing to do from the current state
 – Know transition and cost (reward) functions
 – Either execute complete solution (deterministic) or search again at every step
 – **Know current state**

• **Next:** MDPs — towards reinforcement learning
 – Still know transition and reward function
 – Looking for a **policy** — optimal action from every state
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

- **Action learning:** Reinforcement learning
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next**: MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

- **Action learning**: Reinforcement learning
 - Policy without knowing transition or reward functions
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

- **Action learning:** Reinforcement learning
 - Policy without knowing transition or reward functions
 - **Still know state**
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- Prior, net structure, and CPT’s known
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 4:** Utilities
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 4:** Utilities
 - **Week 7:** Conditional independence and inference (exact and approximate)
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 4:** Utilities
 - **Week 7:** Conditional independence and inference (exact and approximate)
 - **Week 9:** State estimation over time
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 4:** Utilities
 - **Week 7:** Conditional independence and inference (exact and approximate)
 - **Week 9:** State estimation over time
 - **Week 9:** Utility-based decisions
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 4:** Utilities
 - **Week 7:** Conditional independence and inference (exact and approximate)
 - **Week 9:** State estimation over time
 - **Week 9:** Utility-based decisions

- **Week 10:** What if they’re not known?
Course Recap (cont.)

• **Probabilistic Reasoning:** Now state is unknown

• Bayesian networks – state estimation/inference

• **Prior, net structure, and CPT’s known**
 – **Week 4:** Utilities
 – **Week 7:** Conditional independence and inference (exact and approximate)
 – **Week 9:** State estimation over time
 – **Week 9:** Utility-based decisions

• **Week 10:** What if they’re not known?
 – Also Bayesian networks for **classification**
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - Week 4: Utilities
 - Week 7: Conditional independence and inference (exact and approximate)
 - Week 9: State estimation over time
 - Week 9: Utility-based decisions

- **Week 10:** What if they’re not known?
 - Also Bayesian networks for **classification**
 - A type of **machine learning**
Course Recap (cont.)

• **After that:** More machine learning
 – **Week 11:** Perceptrons and Neural Nets (Deep Learning)
Course Recap (cont.)

- **After that:** More machine learning
 - **Week 11:** Perceptrons and Neural Nets (Deep Learning)
 - **Week 12:** SVMs, Kernels, and Clustering
Course Recap (cont.)

- **After that:** More machine learning
 - **Week 11:** Perceptrons and Neural Nets (Deep Learning)
 - **Week 12:** SVMs, Kernels, and Clustering

- **Week 13:** Classical planning
 - Reasoning with first order representations
Course Recap (cont.)

- **After that:** More machine learning
 - **Week 11:** Perceptrons and Neural Nets (Deep Learning)
 - **Week 12:** SVMs, Kernels, and Clustering

- **Week 13:** Classical planning
 - Reasoning with first order representations
 - So far we had only dealt with propositions
Course Recap (cont.)

- **After that**: More machine learning
 - **Week 11**: Perceptrons and Neural Nets (Deep Learning)
 - **Week 12**: SVMs, Kernels, and Clustering

- **Week 13**: Classical planning
 - Reasoning with first order representations
 - So far we had only dealt with propositions
 - Back to known transitions, known state, etc.
Course Recap (cont.)

- **After that:** More machine learning
 - **Week 11:** Perceptrons and Neural Nets (Deep Learning)
 - **Week 12:** SVMs, Kernels, and Clustering

- **Week 13:** Classical planning
 - Reasoning with first order representations
 - So far we had only dealt with propositions
 - Back to known transitions, known state, etc.

- **Week 14:** Philosophical foundations and ethics
Course Recap (cont.)

- **After that:** More machine learning
 - **Week 11:** Perceptrons and Neural Nets (Deep Learning)
 - **Week 12:** SVMs, Kernels, and Clustering

- **Week 13:** Classical planning
 - Reasoning with first order representations
 - So far we had only dealt with propositions
 - Back to known transitions, known state, etc.

- **Week 14:** Philosophical foundations and ethics
 - It’s all about building agents
 - Sense, decide, act
Course Recap (cont.)

- **After that:** More machine learning
 - **Week 11:** Perceptrons and Neural Nets (Deep Learning)
 - **Week 12:** SVMs, Kernels, and Clustering

- **Week 13:** Classical planning
 - Reasoning with first order representations
 - So far we had only dealt with propositions
 - Back to known transitions, known state, etc.

- **Week 14:** Philosophical foundations and ethics
 - It’s all about building agents
 - Sense, decide, act
 - Maximize expected utility
Topics not covered

- Knowledge representation and reasoning (Chapters 7-9, 11, 12)
- Game theory and auctions (Sections 17.5, 17.6)
- Aspects of learning (Chapters 18, 19)
- Natural language (Chapters 22, 23)
- Vision (Chapter 24)
- Robotics (Chapter 25)
Surveys

• TA’s and my surveys

• Negative and positive feedback useful
Surveys

- TA’s and my surveys
- Negative and positive feedback useful
- Invitation to send more feedback by email
Surveys

- TA’s and my surveys
- Negative and positive feedback useful
- Invitation to send more feedback by email
 - When I teach the course next, what should I do the same? What should change?
Surveys

- TA’s and my surveys
- Negative and positive feedback useful
- Invitation to send more feedback by email
 - When I teach the course next, what should I do the same? What should change?
- Most important: course rating, instructor rating, written comments
My Perspective

• I’ve enjoyed teaching this class!
My Perspective

- I’ve enjoyed teaching this class!
- I’ve been impressed by the levels of questions and understanding
My Perspective

• I’ve enjoyed teaching this class!

• I’ve been impressed by the levels of questions and understanding
 – You kept me on my toes
 – I learned tons!
My Perspective

• I’ve enjoyed teaching this class!

• I’ve been impressed by the levels of questions and understanding
 – You kept me on my toes
 – I learned tons!

• Thanks to Josiah, Yinan, and Rohan for handling all the assignments!
My Perspective

• I’ve enjoyed teaching this class!

• I’ve been impressed by the levels of questions and understanding
 – You kept me on my toes
 – I learned tons!

• Thanks to Josiah, Yinan, and Rohan for handling all the assignments!

• I’m proud of all of you for sticking with it through what I think was a demanding course
My Perspective

• I’ve enjoyed teaching this class!

• I’ve been impressed by the levels of questions and understanding
 – You kept me on my toes
 – I learned tons!

• Thanks to Josiah, Yinan, and Rohan for handling all the assignments!

• I’m proud of all of you for sticking with it through what I think was a demanding course

THANKS!!!