
CS	343H:	Honors	Artificial	Intelligence 
Informed	Search

Prof.	Peter	Stone	

University	of	Texas	at	Austin	
[These	slides	based	on	ones	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Today

▪ Informed	Search	
▪Heuristics	
▪Greedy	Search	
▪ A*	Search	

▪ Graph	Search

Recap:	Search

▪ Search	problem:	
▪ States	(configurations	of	the	world)	
▪ Actions	and	costs	
▪ Successor	function	(world	dynamics)	
▪ Start	state	and	goal	test	

▪ Search	tree:	
▪ Nodes:	represent	plans	for	reaching	states	
▪ Plans	have	costs	(sum	of	action	costs)	

▪ Search	algorithm:	
▪ Systematically	builds	a	search	tree	
▪ Chooses	an	ordering	of	the	fringe	(unexplored	nodes)	
▪ Optimal:	finds	least-cost	plans

Example:	Pancake	Problem

Cost:	Number	of	pancakes	flipped

Example:	Pancake	Problem

3

2

4

3

3

2

2

2

4

State	space	graph	with	costs	as	weights

3
4

3

4

2

General	Tree	Search

Action:	flip	top	two  
Cost:	2

Action:	flip	all	four 
Cost:	4
Path	to	reach	goal:	
Flip	four,	flip	three	

Total	cost:	7

The	One	Queue

▪ All	these	search	algorithms	are	the	same	
except	for	fringe	strategies	
▪ Conceptually,	all	fringes	are	priority	
queues	(i.e.	collections	of	nodes	with	
attached	priorities)	

▪ Practically,	for	DFS	and	BFS,	you	can	avoid	
the	log(n)	overhead	from	an	actual	
priority	queue,	by	using	stacks	and	
queues	

▪ Can	even	code	one	implementation	that	
takes	a	variable	queuing	object

Uninformed	Search

Uniform	Cost	Search

▪ Strategy:	expand	lowest	path	cost	

▪ The	good:	UCS	is	complete	and	optimal!	

▪ The	bad:	
▪ Explores	options	in	every	“direction”	
▪ No	information	about	goal	location

Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1

Video	of	Demo	Contours	UCS	Empty

Video	of	Demo	Contours	UCS	Pacman	Small	Maze

Informed	Search

Search	Heuristics

▪ A	heuristic	is:	
▪ A	function	that	estimates	how	close	a	state	is	to	a	goal	
▪ Designed	for	a	particular	search	problem	
▪ Examples:	Manhattan	distance,	Euclidean	distance	for	

pathing

10

5

11.2

Example:	Heuristic	Function

h(x)

Example:	Heuristic	Function

Heuristic:	the	number	of	the	largest	pancake	that	is	still	out	of	place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Greedy	Search

Example:	Heuristic	Function

h(x)

Greedy	Search

▪ Expand	the	node	that	seems	closest…	

▪ What	can	go	wrong?

Greedy	Search

▪ Strategy:	expand	a	node	that	you	think	is	closest	
to	a	goal	state	
▪ Heuristic:	estimate	of	distance	to	nearest	goal	for	
each	state	

▪ Best	case:	
▪ Best-first	takes	you	straight	to	the	nearest	goal	

▪ A	common	case:	
▪ Suboptimal	route	to	goal	due	to	imperfect	heuristic	
▪ Does	not	lead	to	nearest	goal		

▪ Worst-case:	like	a	badly-guided	DFS

…
b

…
b

Video	of	Demo	Contours	Greedy	(Empty)

Video	of	Demo	Contours	Greedy	(Pacman	Small	Maze)

A*	Search

A*	Search

UCS Greedy

A*

▪ Uniform-cost	orders	by	path	cost,	or	backward	cost		g(n)	
▪ Greedy	orders	by	goal	proximity,	or	forward	cost		h(n)	

▪ A*	Search	orders	by	the	sum:	f(n)	=	g(n)	+	h(n)

Combining	UCS	and	Greedy

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

S

a

b

c

ed

dG

G

g	=	0	
h=6

g	=	1	
h=5

g	=	2	
h=6

g	=	3	
h=7

g	=	4	
h=2

g	=	6	
h=0

g	=	9	
h=1

g	=	10	
h=2

g	=	12	
h=0

When	should	A*	terminate?

▪ Should	we	stop	when	we	enqueue	a	goal?

S

B

A

G

2

3

2

2
h	=	1

h	=	2

h	=	0h	=	3

▪ No:	only	stop	when	we	expand	a	goal

Is	A*	Optimal?

▪ What	will	A*	do	here?	
▪ What	went	wrong?	
▪ Actual	bad	goal	cost	<	estimated	good	goal	cost	
▪ We	need	estimates	to	be	less	than	actual	costs!

A

GS

1 3

h	=	6

h	=	0

5
h	=	7

Idea:	Admissibility

Inadmissible	(pessimistic)	heuristics	break	
optimality	by	trapping	good	plans	on	the	fringe

Admissible	(optimistic)	heuristics	can	still	help	
to	delay	the	evaluation	of	bad	plans,	but	never	

overestimate	the	true	costs

Admissible	Heuristics

▪ A	heuristic	h	is	admissible	(optimistic)	if:	

	 where															is	the	true	cost	to	a	nearest	goal	

▪ Examples:	

▪ Coming	up	with	admissible	heuristics	is	most	of	what’s	involved	in	using	A*	
in	practice.

4
15

Optimality	of	A*	Tree	Search

Optimality	of	A*	Tree	Search

Assume:	
▪ A	is	an	optimal	goal	node	
▪ B	is	a	suboptimal	goal	node	
▪ h	is	admissible	

Claim:	

▪ A	will	exit	the	fringe	before	B

…

Optimality	of	A*	Tree	Search:	Blocking

Proof:	
▪ Imagine	B	is	on	the	fringe	
▪ Some	ancestor	n	of	A	is	on	the	

fringe,	too	(maybe	A!)	
▪ Claim:	n	will	be	expanded	before	B	

1. f(n)	is	less	or	equal	to	f(A)

Definition	of	f-cost
Admissibility	of	h

…

h	=	0	at	a	goal

Optimality	of	A*	Tree	Search:	Blocking

Proof:	
▪ Imagine	B	is	on	the	fringe	
▪ Some	ancestor	n	of	A	is	on	the	

fringe,	too	(maybe	A!)	
▪ Claim:	n	will	be	expanded	before	B	

1. f(n)	is	less	or	equal	to	f(A)	
2. f(A)	is	less	than	f(B)

B	is	suboptimal
h	=	0	at	a	goal

…

Optimality	of	A*	Tree	Search:	Blocking

Proof:	
▪ Imagine	B	is	on	the	fringe	
▪ Some	ancestor	n	of	A	is	on	the	fringe,	

too	(maybe	A!)	
▪ Claim:	n	will	be	expanded	before	B	

1. f(n)	is	less	or	equal	to	f(A)	
2. f(A)	is	less	than	f(B)	
3. 	n	expands	before	B	

▪ All	ancestors	of	A	expand	before	B	
▪ A	expands	before	B	
▪ A*	search	is	optimal

…

Properties	of	A*

Properties	of	A*

…
b

…
b

Uniform-Cost A*

UCS	vs	A*	Contours

▪ Uniform-cost	expands	equally	in	all	
“directions”	

▪ A*	expands	mainly	toward	the	goal,	
but	does	hedge	its	bets	to	ensure	
optimality

Start Goal

Start Goal

Video	of	Demo	Contours	(Empty)	--	UCS

Video	of	Demo	Contours	(Empty)	--	Greedy

Video	of	Demo	Contours	(Empty)	–	A*

Pacman	-	A*

Pacman	-	Greedy

Pacman	-	UCS

Comparison

Greedy Uniform	Cost A*

Guess	algorithm	(DFS	/	BFS	/	UCS	/	Greedy	/	A*)

Guess	algorithm	(DFS	/	BFS	/	UCS	/	Greedy	/	A*)

Guess	algorithm	(DFS	/	BFS	/	UCS	/	Greedy	/	A*)

Guess	algorithm	(DFS	/	BFS	/	UCS	/	Greedy	/	A*)

Guess	algorithm	(DFS	/	BFS	/	UCS	/	Greedy	/	A*)

A*	Applications

▪ Video	games	
▪ Pathing	/	routing	problems	
▪ Resource	planning	problems	
▪ Robot	motion	planning	
▪ Language	analysis	
▪ Machine	translation	
▪ Speech	recognition	
▪ …

Creating	Admissible	Heuristics

▪ Most	of	the	work	in	solving	hard	search	problems	optimally	is	in	coming	up	with	
admissible	heuristics	

▪ Often,	admissible	heuristics	are	solutions	to	relaxed	problems,	where	new	actions	are	
available	

▪ Inadmissible	heuristics	are	often	useful	too

15
366

Example:	8	Puzzle

▪ What	are	the	states?	
▪ How	many	states?	
▪ What	are	the	actions?	
▪ How	many	successors	from	the	start	state?	
▪ What	should	the	costs	be?

Start	State Goal	StateActions

8	Puzzle	I

▪ Heuristic:	Number	of	tiles	misplaced	
▪ Why	is	it	admissible?	
▪ h(start)	=	
▪ This	is	a	relaxed-problem	heuristic

8

Average	nodes	expanded	when	
the	optimal	path	has…
…4	steps …8	steps …12	steps

UCS 112 6,300 3.6	x	106

TILES 13 39 227

Start	State Goal	State

Statistics	from	Andrew	Moore

8	Puzzle	II

▪ What	if	we	had	an	easier	8-puzzle	where	
any	tile	could	slide	any	direction	at	any	
time,	ignoring	other	tiles?	

▪ Total	Manhattan	distance	

▪ Why	is	it	admissible?	

▪ h(start)	= 3	+	1	+	2	+	…	=	18
Average	nodes	expanded	when	
the	optimal	path	has…
…4	steps …8	steps …12	steps

TILES 13 39 227
MANHATTAN 12 25 73

Start	State Goal	State

8	Puzzle	III

▪ How	about	using	the	actual	cost	as	a	heuristic?	
▪ Would	it	be	admissible?	
▪ Would	we	save	on	nodes	expanded?	
▪ What’s	wrong	with	it?	

▪ With	A*:	a	trade-off	between	quality	of	estimate	and	work	per	node	
▪ As	heuristics	get	closer	to	the	true	cost,	you	will	expand	fewer	nodes	but	usually	
do	more	work	per	node	to	compute	the	heuristic	itself

Trivial	Heuristics,	Dominance

▪ Dominance:	ha	≥	hc	if	

▪ Heuristics	form	a	semi-lattice:	
▪ Max	of	admissible	heuristics	is	admissible	

▪ Trivial	heuristics	
▪ Bottom	of	lattice	is	the	zero	heuristic	(what	

does	this	give	us?)	
▪ Top	of	lattice	is	the	exact	heuristic

Graph	Search

▪ Failure	to	detect	repeated	states	can	cause	exponentially	more	work.		

Search	TreeState	Graph

Tree	Search:	Extra	Work!

Graph	Search

▪ In	BFS,	for	example,	we	shouldn’t	bother	expanding	the	circled	nodes	(why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph	Search

▪ Idea:	never	expand	a	state	twice	

▪ How	to	implement:		

▪ Tree	search	+	set	of	expanded	states	(“closed	set”)	
▪ Expand	the	search	tree	node-by-node,	but…	
▪ Before	expanding	a	node,	check	to	make	sure	its	state	has	never	been	

expanded	before	
▪ If	not	new,	skip	it,	if	new	add	to	closed	set	

▪ Important:	store	the	closed	set	as	a	set,	not	a	list	

▪ Can	graph	search	wreck	completeness?		Why/why	not?	

▪ How	about	optimality?

A*	Graph	Search	Gone	Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S	(0+2)

A	(1+4) B	(1+1)

C	(2+1)

G	(5+0)

C	(3+1)

G	(6+0)

State	space	graph Search	tree

Consistency	of	Heuristics
▪ Main	idea:	estimated	heuristic	costs	≤	actual	costs	

▪ Admissibility:	heuristic	cost	≤	actual	cost	to	goal	
	 	 h(A)	≤	actual	cost	from	A	to	G	
▪ Consistency:	heuristic	“arc”	cost	≤	actual	cost	for	each	arc	
	 	 h(A)	–	h(C)	≤	cost(A	to	C)			

i.e.	if	the	true	cost	of	an	edge	from	A	to	C	is	X,	then	the	h-value	should	not	

decrease	by	more	than	X	between	A	and	C.	

▪ Consequences	of	consistency:	

▪ The	f	value	along	a	path	never	decreases	
	 	 	h(A)	≤	cost(A	to	C)	+	h(C)	

▪ A*	graph	search	is	optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality	of	A*	Graph	Search

▪ Sketch:	consider	what	A*	does	with	a	
consistent	heuristic:	

▪ Fact	1:	In	tree	search,	A*	expands	nodes	in	
increasing	total	f	value	(f-contours)  

▪ Fact	2:	For	every	state	s,	nodes	that	reach	s	
optimally	are	expanded	before	nodes	that	
reach	s	suboptimally	

▪ Result:	A*	graph	search	is	optimal

…

f	≤ 3

f	≤ 2

f	≤ 1

Optimality

▪ Tree	search:	
▪ A*	is	optimal	if	heuristic	is	admissible	
▪ UCS	is	a	special	case	(h	=	0)	

▪ Graph	search:	
▪ A*	optimal	if	heuristic	is	consistent	
▪ UCS	optimal	(h	=	0	is	consistent)	

▪ Consistency	implies	admissibility	

▪ In	general,	most	natural	admissible	heuristics	
tend	to	be	consistent,	especially	if	from	relaxed	
problems

A*:	Summary

A*:	Summary

▪ A*	uses	both	backward	costs	and	(estimates	of)	forward	costs	

▪ A*	is	optimal	with	admissible	/	consistent	heuristics	

▪ Heuristic	design	is	key:	often	use	relaxed	problems

Tree	Search	Pseudo-Code

Graph	Search	Pseudo-Code

Optimality	of	A*	Graph	Search

▪ Consider	what	A*	does:	
▪ Expands	nodes	in	increasing	total	f	value	(f-contours) 
Reminder:	f(n)	=	g(n)	+	h(n)	=	cost	to	n	+	heuristic	

▪ Proof	idea:	the	optimal	goal(s)	have	the	lowest	f	value,	so	it	
must	get	expanded	first

…

f ≤ 3

f ≤ 2

f ≤ 1
There’s a problem with this
argument. What are we assuming is
true?

Optimality	of	A*	Graph	Search

Proof:	
▪ New	possible	problem:	some	n	on	path	to	G*	

isn’t	in	queue	when	we	need	it,	because	some	
worse	n’	for	the	same	state	dequeued	and	
expanded	first	(disaster!)	

▪ Take	the	highest	such	n	in	tree	
▪ Let	p	be	the	ancestor	of	n	that	was	on	the	

queue	when	n’	was	popped	
▪ f(p)	<	f(n)	because	of	consistency	
▪ f(n)	<	f(n’)	because	n’	is	suboptimal	
▪ p	would	have	been	expanded	before	n’	
▪ Contradiction!

