CS 343H: Honors Artificial Intelligence

Search

Prof. Peter Stone

University of Texas at Austin

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

= Agents that Plan Ahead

= Search Problems

» Uninformed Search Methods

» Depth-First Search

= Breadth-First Search

s Uniform-Cost Search

Agents that Plan

Reflex Agents

Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

» Consider how the world IS

Can a reflex agent be rational?

Video of Demo Reflex — Success

*
"
k4
o

‘0 * ° L] .

SCORE: 0

Jiemzm T RTTRERIE

Video of Demo Reflex — Stuck

Planning Agents

= Planning agents:
= Ask “what if”

= Decisions based on (hypothesized) consequences
of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

Video of Demo — Suboptimal local replanning

Video of Demo — Globally optimal planning

SCORE:

Search Problems

Search Problems

= A search problem consists of:

= A successor function "N’ 1.0 u

(with actions, costs)
— u
“E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

POladua
Neamt
S Zennd\] 51 n\\“\-
0 lasi
Ar 10 \ \ o
e— — Sibiu 29 Fag;ras \
s - D uVaslui
50 \
Rimnizu Vilcea ® \ /

ﬁ\soara

T ~. AN Ve

?Lugoj \ﬂ\ \ »- /)

146 Hirsova
BMeohadia 101

e ziceri
\ 86
& /l 8 \%hamq'
Dobreta __-_ / ¢ ¥

"
ralova n/ i i Eforie
Giurgiu

State space:

m Cities

Successor function:

= Roads: Go to adjacent city with

cost = distance

Start state:
= Arad

Goal test:

m |s state ==

Solution?

Bucharest?

What’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30

= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23°)x(122)x4 (> 74 trillion!)
= States for pathing?
120
= States for eat-all-dots?
120x(23°) (> 128 billion)

Quiz: Safe Passage

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?

= (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

= |n a state space graph, each state occurs only u
once!

= The goal test is a set of goal nodes (maybe only one) /

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
= The goal test is a set of goal nodes (maybe only one)

= |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny search graph for a tiny search
problem

Search Trees

! _ This is now / start
10— “E”, 1.0
u - _ Possible futures
I I

= A search tree:

= A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

o 7
=

_ /

Each NODE in the
search tree is an

entire PATH in the

state space graph.

We construct both
on demand — and we
construct as little as
possible.

Search Tree

S
/ \\
d e P
/\\ / N\ -
c e h r q
[/7 \ / \ I
a h r p q f
/1 \ | ' ‘7 \
p q f q c G
1 I\
9 ¢ G a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!
So why would we ever use a search tree?

1) Cannot store “closed list” (previously visited nodes)
2) Graph happens to be a tree, so no reason to store closed list

Tree Search

Search Example: Romania

Oradea

Fagaras

\\
\ &0
Lrimisoam \Eimnicu Vilcea

s
-,

L]

q Lugoj “ g7~ Pitesti
|

il \ “
EMehadia \ 146

I)S i
85 ,_,F/ - [JHirsova
4"-’ \
; \

75 ' \\S‘j
N /- Bucharest \
120 \
Dobreta b~ _ 1200 oo

!/

[Giurgiu Eforie

Searching with a Search Tree

= Search:
s Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

function I'REE-SEARCH(problem. slralegy) relurns a solution, or failure
nitialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a geal state then return the cerresponding sclution
clsc expand the node and add the resulting nodes to the search tree
enrl

= |mportant ideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation: Fringe
is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

_ (
Space complexity? 1 node
b nodes
Cartoon of search tree: b nodes
= b is the branching factor m tiers <
= m is the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b?+...b™=0(b™)

Depth-First Search (DFS) Properties

What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
» If mis finite, takes time O(b™)
b2 nodes
= How much space does the fringe take? m tiers <
= Only has siblings on path to root, so O(bm)
= Isit complete?
b™ nodes

= m could be infinite, so only if we prevent cycles
(more later)

Is it optimal?

= No, it finds the “leftmost” solution, regardless of
depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

m Processes all nodes above shallowest solution
= Let depth of shallowest solution be s
= Search takes time O(b?®)

How much space does the fringe take?
= Has roughly the last tier, so O(b*)

Is it complete?

= s must be finite if a solution exists, so yes!

Is it optimal?
= Only if costs are all 1 (more on costs later)

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Quiz: DFS vs BFS

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

= What is the worst case for each?

Video of Demo Maze Water DFS/BFS (part 1)

CHGNS Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 2)

CHGNS Search Strategies Demo

Iterative Deepening

» |dea: get DFS’s space advantage with BFS'’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

= |sn’t that wastefully redundant? /

= Generally most work happens in the lowest level
searched, so not so bad!

Cost-Sensitive Search

3
O (&) :
START

1 4 2

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution! 4
= If that solution costs C* and arcs cost at least €, then the “effective
depth” is roughly C*/¢
: C¥e o : C*e "tiers” <
= Takes time O(b™~ ?) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢ ™)

= |s it complete?

O

= Assuming best solution has a finite cost and minimum arc cost is positive,
yes!

= Is it optimal?

= Yes! (Proof next lecture via A*)

Uniform Cost Issues

Remember: UCS explores increasing cost
contours

The good: UCS is complete and optimal!

The bad:

= Explores options in every “direction”
= No information about goal location

We’'ll fix that soon!

Video of Demo Empty UCS

N-XaXe Saarch Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

‘® 00 Search Strategies Lemo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

® 0O Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

®CO Search Strategies Demc Y

The One Queue

= All these search algorithms are the
same except for fringe strategies /LB‘]»L&A;’M é_\j\@x\...\\j—u}
= Conceptually, all fringes are priority - : |

queues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation that
takes a variable queuing object

Search and Models

= Search operates over
models of the world

= The agent doesn’t actually
try all the plans out in the
real world!

» Planning is all “in
simulation”

= Your search is only as good
as your models...

