Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of (discounted) rewards
Recap: MDPs

- **Markov decision processes:**
 - States S
 - Actions A
 - Transitions $P(s' | s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$ (and discount γ)
 - Start state s_0

- **Quantities:**
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Gridworld Values V*
Gridworld: Q^*

Q-VALUES AFTER 100 ITERATIONS
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]
\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Bellman equations characterize the optimal values:

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method

- ... though the V_k vectors are also interpretable as time-limited values
Convergence*

- How do we know the V_k vectors are going to converge?

- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k and $k+1$ expectimax, which result in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge
Policy Methods
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state
 - ... though the tree’s value would depend on which policy we fixed
Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy.

Define the utility of a state s, under a fixed policy π:

$$V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi$$

Recursive relation (one-step look-ahead / Bellman equation):

$$V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]$$
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
How do we calculate the V’s for a fixed policy π?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

Efficiency: $O(S^2)$ per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system

- Solve with Matlab (or your favorite linear system solver)
Let’s imagine we have the optimal values \(V^*(s) \).

How should we act?
- It’s not obvious!

We need to do a mini-expectimax (one step)

\[
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
\]

This is called policy extraction, since it gets the policy implied by the values.
Let’s imagine we have the optimal q-values:

How should we act?
- Completely trivial to decide!

\[\pi^*(s) = \arg \max_{\alpha} Q^*(s, \alpha) \]

Important lesson: actions are easier to select from q-values than values!
- In fact, you don’t even need a model!
Policy Iteration
Problems with Value Iteration

- Value iteration repeats the Bellman updates:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
k=0

Values after 0 iterations

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

Noise = 0.2
Discount = 0.9
Living reward = 0
K = 2

Values after 2 iterations:

- 0.00
- 0.00
- 0.72
- 1.00
- 0.00
- 0.00
- 0.00
- 0.00
- 0.00

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 4

VALUES AFTER 4 ITERATIONS

+---+---+---+---+
| 0.37 | 0.66 | 0.83 | 1.00 |
+-----+-----+-----+-----+
| 0.00 | 0.51 | -1.00 | |
+-----+-----+-----+-----+
| 0.00 | 0.00 | 0.31 | 0.00 |
+---+---+---+---+

Noise = 0.2
Discount = 0.9
Living reward = 0
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.51</td>
<td>0.72</td>
<td>0.84</td>
<td>1.00</td>
</tr>
<tr>
<td>0.27</td>
<td></td>
<td>0.55</td>
<td></td>
<td>-1.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.22</td>
<td>0.37</td>
<td></td>
<td>0.13</td>
</tr>
</tbody>
</table>

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6
k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 7 ITERATIONS
Values After 8 Iterations

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.53</td>
<td>0.57</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>0.39</td>
<td>0.46</td>
<td>0.26</td>
</tr>
</tbody>
</table>

- **k = 8**
- **Noise = 0.2**
- **Discount = 0.9**
- **Living reward = 0**
k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 11$

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 12 ITERATIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.57</td>
<td></td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.49</td>
<td>0.42</td>
<td>0.47</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Parameters

- **k = 12**
- **Noise = 0.2**
- **Discount = 0.9**
- **Living reward = 0**
k=100

Values after 100 iterations:

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Iteration

- **Evaluation**: For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 \[
 V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right]
 \]

- **Improvement**: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg\max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)
- Both are dynamic programs for solving MDPs
Asynchronous Value Iteration*

- In value iteration, we update every state in each iteration.

- Actually, any sequences of Bellman updates will converge if every state is visited infinitely often.

- In fact, we can update the policy as seldom or often as we like, and we will still converge.

- Idea: Update states whose value we expect to change:

 If \(|V_{i+1}(s) - V_i(s)| \) is large then update predecessors of \(s \).
So you want to….
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
- They basically are – they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions
Double Bandits
Double-Bandit MDP

- **Actions**: Blue, Red
- **States**: Win, Lose

No discount
100 time steps
Both states have the same value
Solving MDPs is offline planning
- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

<table>
<thead>
<tr>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>150</td>
</tr>
<tr>
<td>Play Blue</td>
<td>100</td>
</tr>
</tbody>
</table>

No discount
100 time steps
Both states have the same value
Let’s Play!

$2 \quad $2 \quad $0 \quad $2 \quad $2

$2 \quad $2 \quad $0 \quad $0 \quad $0
Online Planning

- Rules changed! Red’s win chance is different.
Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Next Time: Reinforcement Learning!