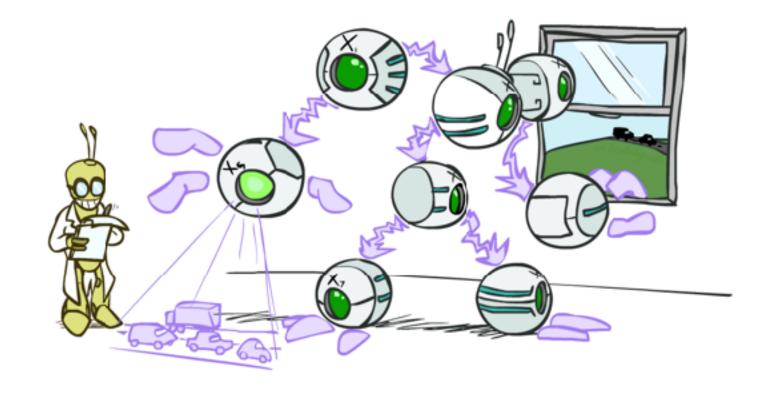
CS 343H: Honors Artificial Intelligence

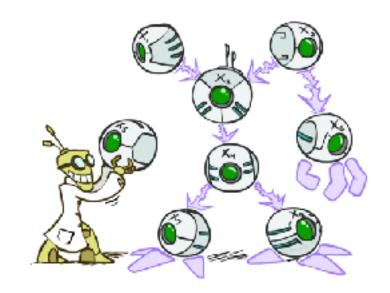
Bayes Nets: Inference



Prof. Peter Stone — The University of Texas at Austin

Bayes Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values $P(X|a_1 \ldots a_n)$

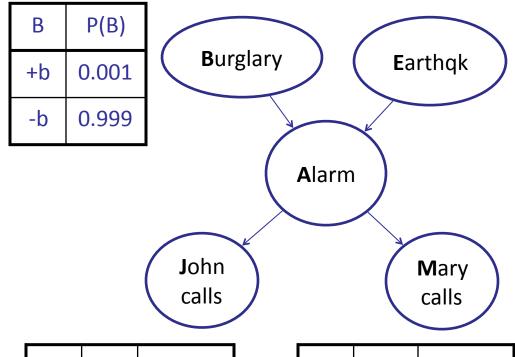


- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



Example: Alarm Network



Α	J	P(J A)
+a	+j	0.9
+a	<u>.</u>	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)
+e	0.002
-e	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network



P(J|A)

0.9

0.1

0.05

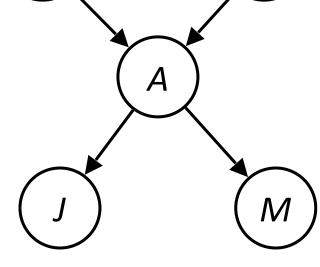
0.95

+a

+a

-a

-a



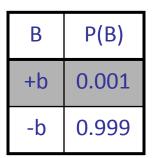
Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

P(+b, -e, +a, -j, +m) =	
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =	=

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network



P(J|A)

0.9

0.1

0.05

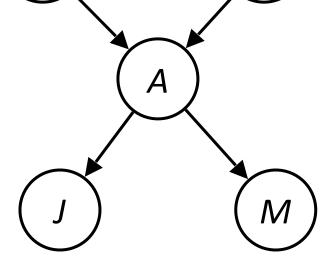
0.95

+a

+a

-a

-a



Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

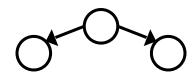
В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	ę	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

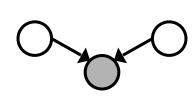
D-Separation

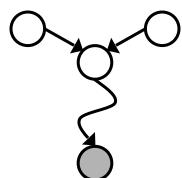
- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!

- A path is active if each triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

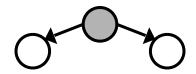
Active Triples







Inactive Triples



Bayes Nets

- **✓** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes Nets from Data

Inference

 Inference: calculating some useful quantity from a joint probability distribution

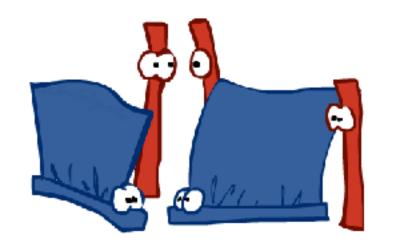
Examples:

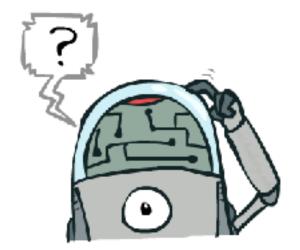
Posterior probability

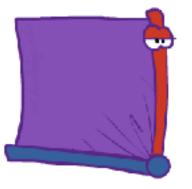
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$$





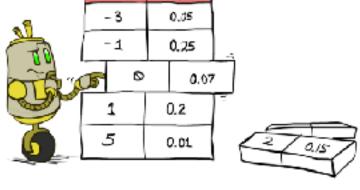


Inference by Enumeration

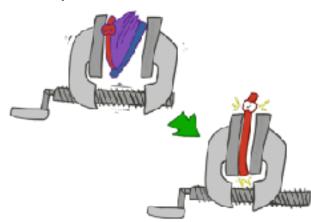
General case:

 $E_1 \dots E_k = e_1 \dots e_k$ Q $H_1 \dots H_r$ $X_1, X_2, \dots X_n$ All variables Evidence variables: Query* variable: Hidden variables:

Step 1: Select the entries consistent with the evidence



Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
 $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

$$P(Q|e_1\cdots e_k)=rac{1}{Z}P(Q,e_1\cdots e_k)$$

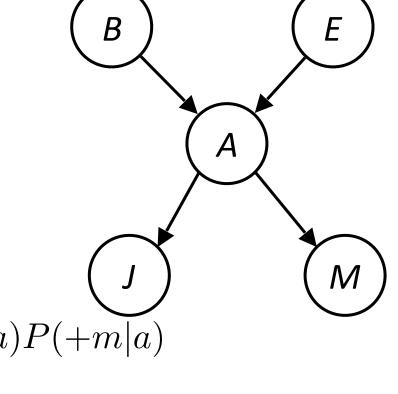
Inference by Enumeration in Bayes Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto P(B,+j,+m)$$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

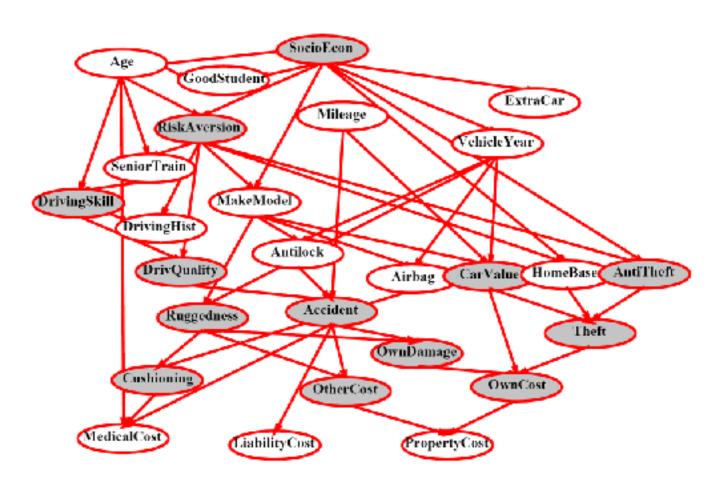
$$= \sum P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$



$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$=P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

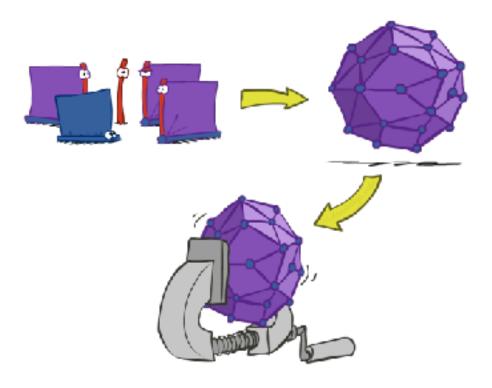
Inference by Enumeration?



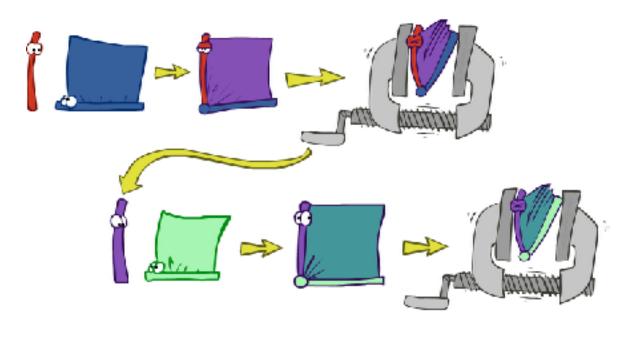
 $P(Antilock|observed\ variables) = ?$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

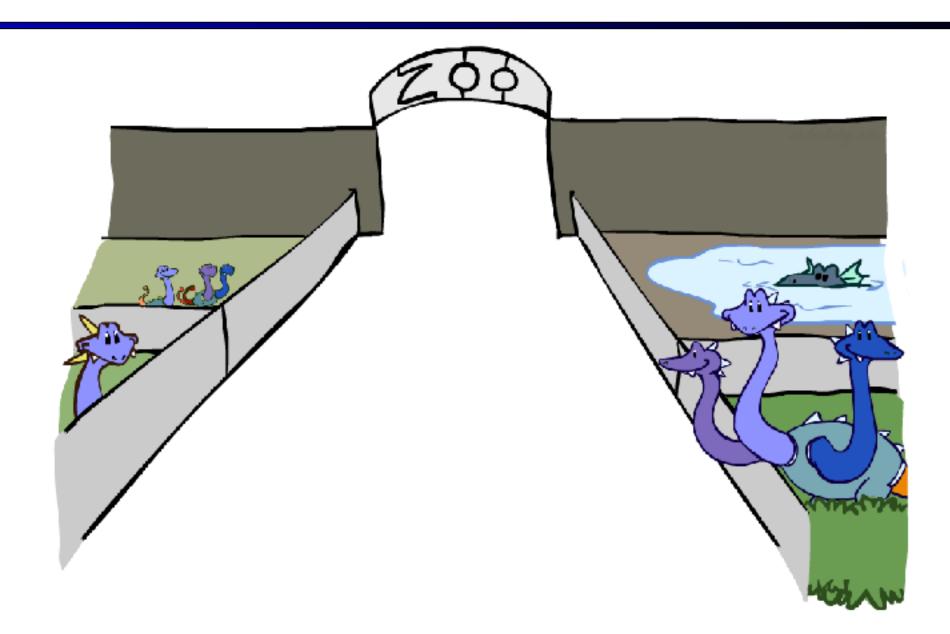


- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration



First we'll need some new notation: factors

Factor Zoo



Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

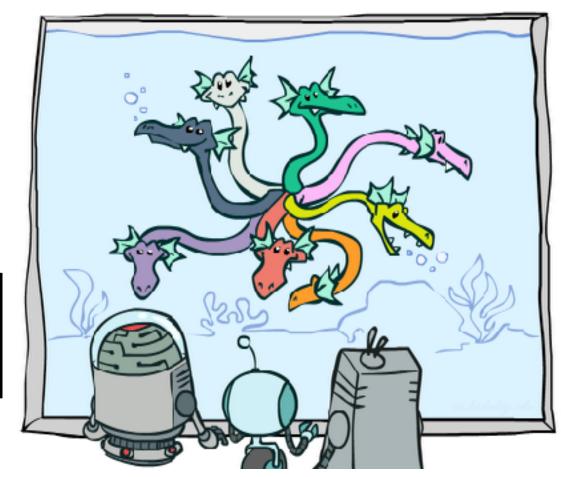
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

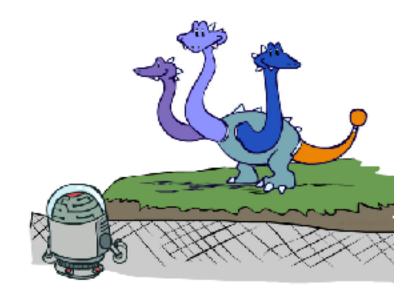
P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3



Factor Zoo II

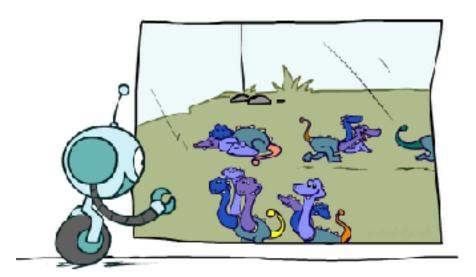
- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1



P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals:
 - P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|



P(W|T)

Т	W	Р	
hot	sun	0.8	
hot	rain	0.2	
cold	sun	0.4	
cold	rain	0.6	

P(W|hot)

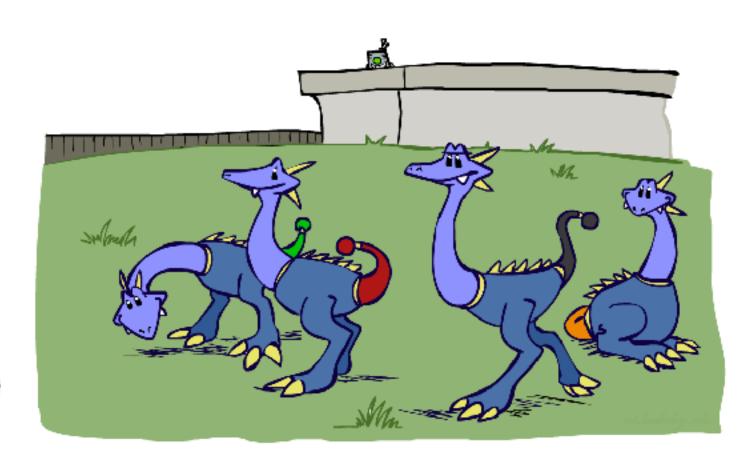
P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y,but for all x
 - Sums to ... who knows!

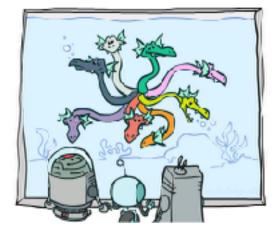
P(rain|T)

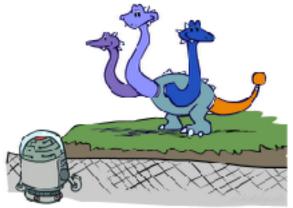
Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)

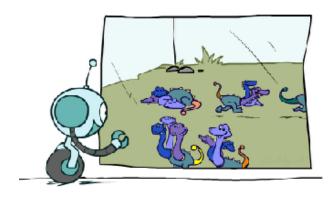


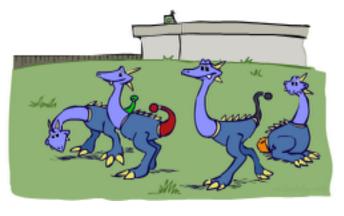
Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 ... y_N \mid x_1 ... x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array









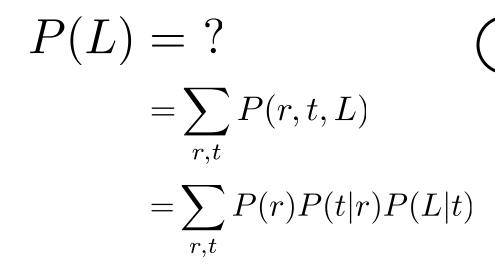
Example: Traffic Domain

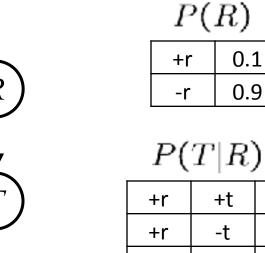
Random Variables

R: Raining

■ T: Traffic

L: Late for class!





()				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

0.1

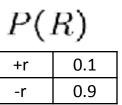
0.9

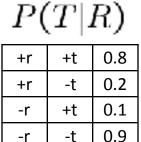
	\	_
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

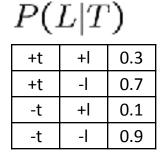
P(L|T)

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)







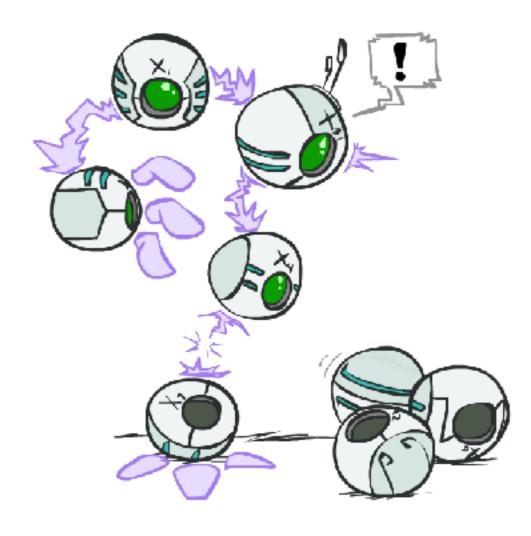
- Any known values are selected
 - ullet E.g. if we know $L=+\ell$ the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

- \	- -	٠,
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(T|R)

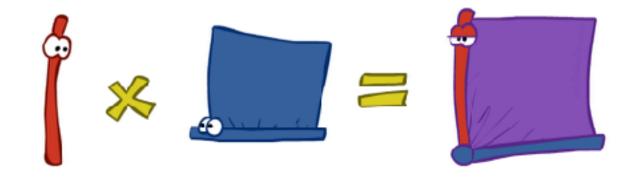
$$P(+\ell|T)$$
+t +l 0.3
-t +l 0.1



Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R



(R)	<i>P</i> (R)	×	<i>P</i> (T	R)	P	(R	,T)
Ť	+r	0.1		+r	+t	0.8	+r	+t	0.08
▼	-r	0.9		+r	-t	0.2	+r	-t	0.02
(T)			_	-r	+t	0.1	-r	+t	0.09
\ ^ /									

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

	•	
+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
		0.04

Computation for each entry: pointwise products

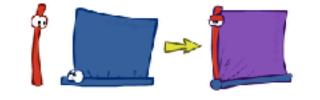
$$\forall r,t$$
:

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

Example: Multiple Joins



Example: Multiple Joins



+r	0.1
-r	0.9

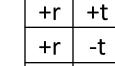
P(T|R)

Join R

D	(R,	T	١)
1	Ĺ	1 t,	1)

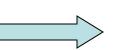
0.08

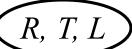
0.02



-r	+t	0.09
-r	-t	0.81

Join T





+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
_r	_ †	0 9

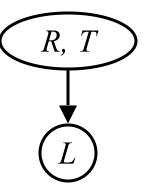
P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9



+t	+	0.3
+t	- -	0.7
-t	+	0.1
-t	-	0.9

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-1	0.018
-r	+t	+1	0.027
-r	+t	-1	0.063
-r	-t	+1	0.081
-r	-t	-1	0.729



Operation 2: Eliminate

Second basic operation: marginalization

Take a factor and sum out a variable

- Shrinks a factor to a smaller one
- A projection operation

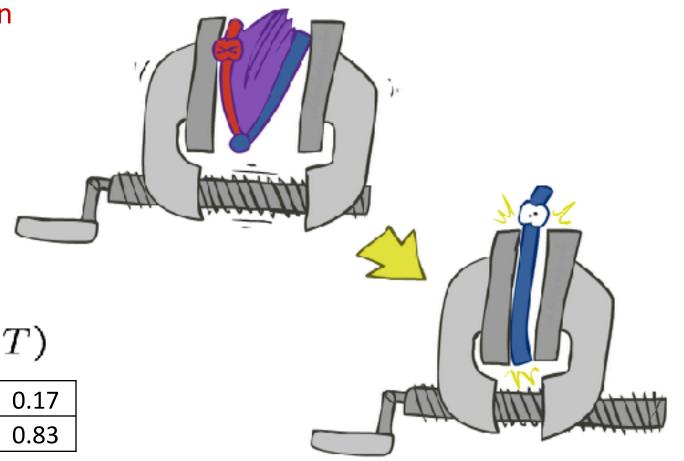
Example:

P(R,T)

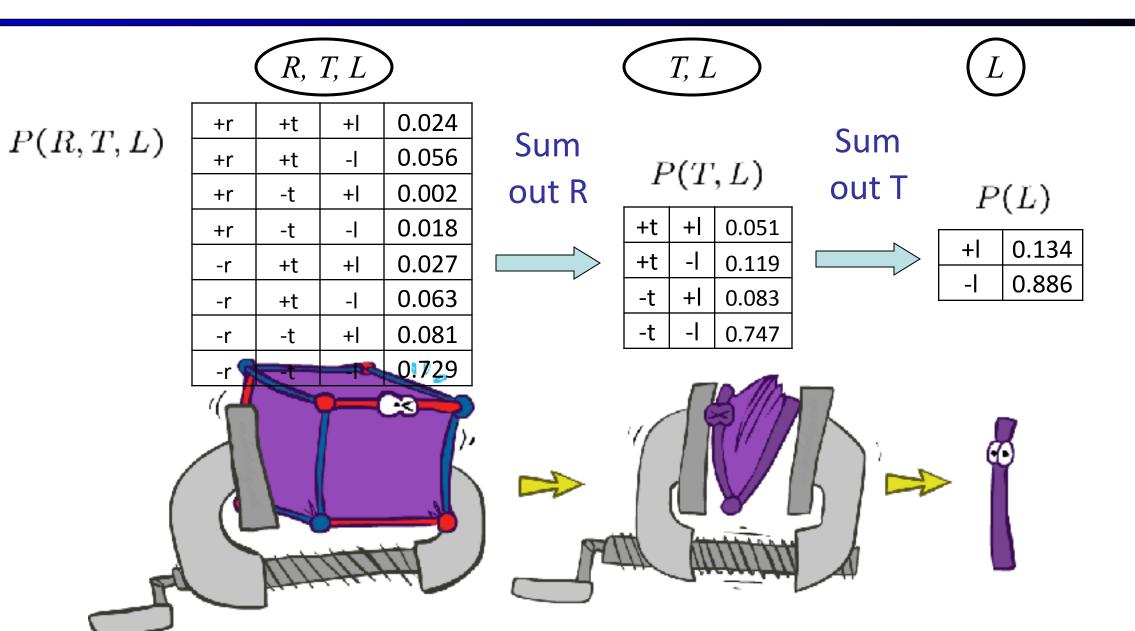
+r	+t	0.08
+r	+	0.02
-r	+t	0.09
-r	-t	0.81

sum R

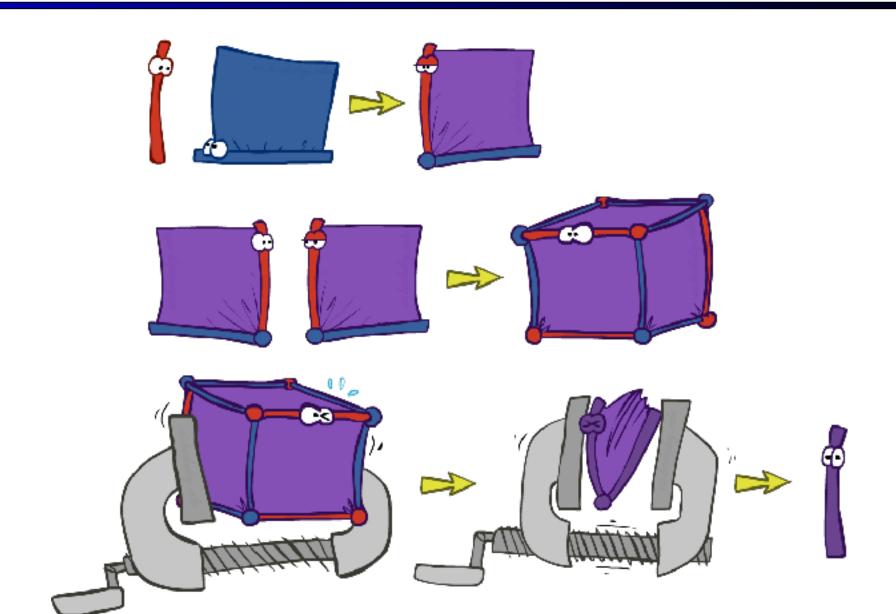
+t	0.17
-t	0.83



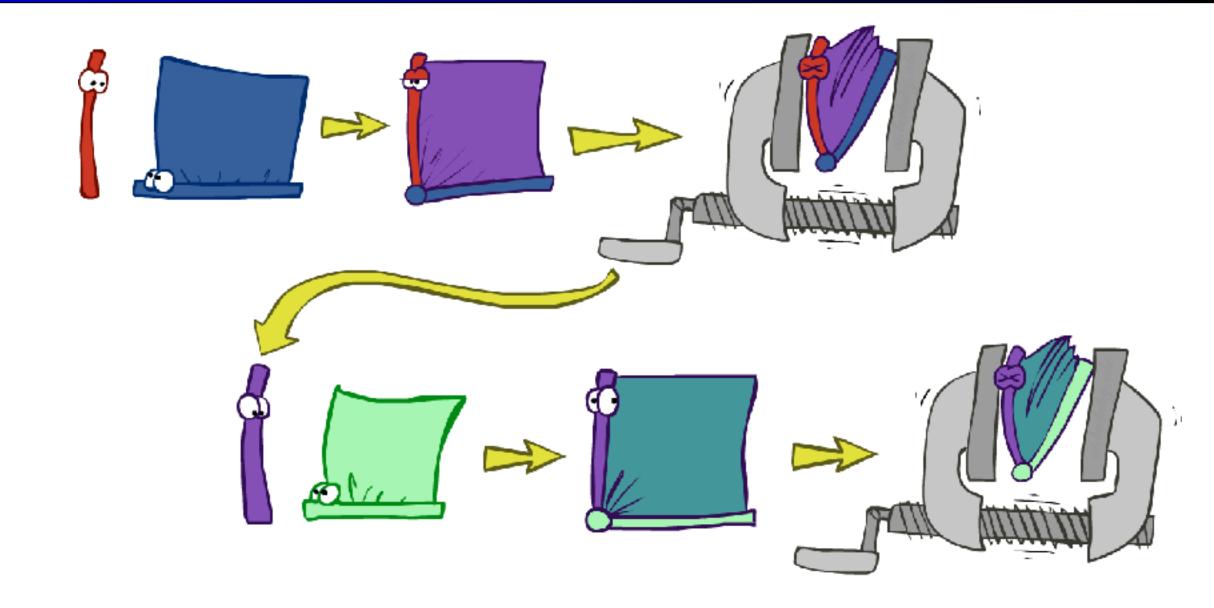
Multiple Elimination



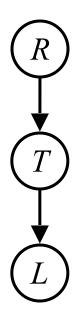
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



Marginalizing Early (= Variable Elimination)



Traffic Domain



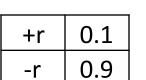
$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$= \sum_{t} P(L|t) \sum_{r} P(r) P(t|r)$$
 Join on r Eliminate r

Marginalizing Early! (aka VE)



P(T|R)

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

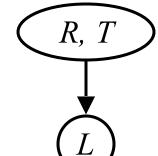
P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

Join R

P(R,T)

+r -t 0.0 -r +t 0.0						
+r -t 0.0			-r		-t	0.81
	•		-r		+t	0.09
11 11 0.0		•	+r		-t	0.02
+r ++ 00	•		+r	,	+t	0.08



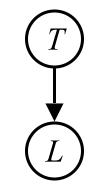
P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Sum out R

P(T)

+t	0.17
-t	0.83



P(L|T)

+t	+	0.3
+t	- -	0.7
-t	+	0.1
-t	-	0.9

Join T

Sum out T

P(T,L)

+t	+	0.051
+t	- -	0.119
-t	+	0.083
-t	-1	0.747

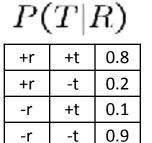
P(L)

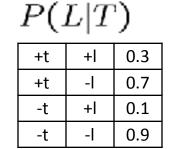
+	0.134
-	0.866

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)		
+r	0.1	
-r	0.9	





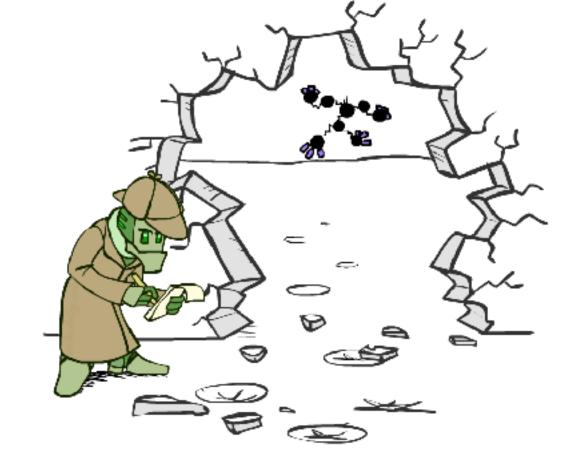
• Computing P(L|+r) , the initial factors become:

$$P(+r)$$
 $P(T|+r)$

$$P(T | + r)$$
+r +t 0.8
+r -t 0.2

$$P(L|T)$$
+t +l 0.3
+t -l 0.7
-t +l 0.1

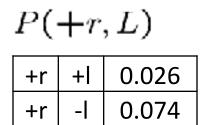
0.9



We eliminate all vars other than query + evidence

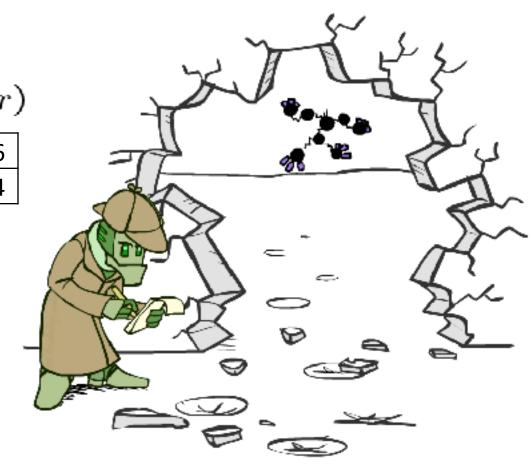
Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:



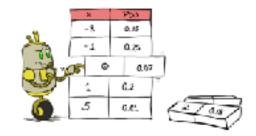
+1	0.26
-1	0.74

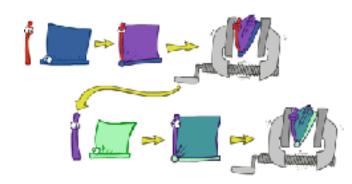
That 's it!



General Variable Elimination

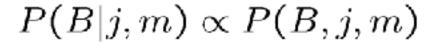
- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize





$$i \cdot \blacksquare = \blacksquare \times \frac{1}{Z}$$

Example

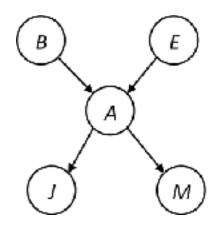


P(E)

P(A|B,E)

P(j|A)

P(m|A)



Choose A

P(m|A)

P(j, m, A|B, E) \sum P(j, m|B, E)

P(E)

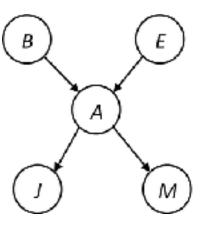
P(j,m|B,E)

Example

P(B)

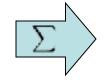
P(E)

P(j,m|B,E)



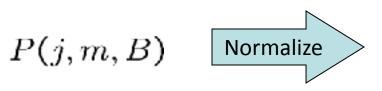
Choose E

P(j,m|B,E)



P(j, m, E|B) \sum P(j, m|B)

Finish with B



P(B|j,m)

Same Example in Equations

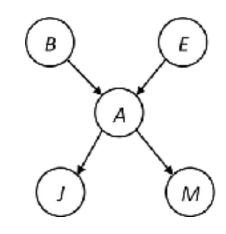
$$P(B|j,m) \propto P(B,j,m)$$

P(B) = P(E

P(E) P(A|B,E)

P(j|A)

P(m|A)



$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

 $= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$

 $= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$

 $= \sum_{e} P(B)P(e)f_1(B, e, j, m)$

 $= P(B) \sum_{e} P(e) f_1(B, e, j, m)$

 $= P(B)f_2(B,j,m)$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

use $x^*(y+z) = xy + xz$

joining on a, and then summing out gives f₁

use $x^*(y+z) = xy + xz$

joining on e, and then summing out gives f₂

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$$

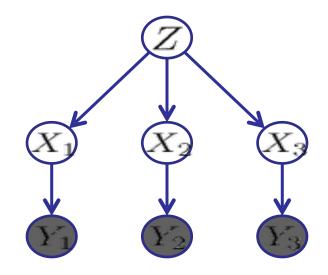
Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

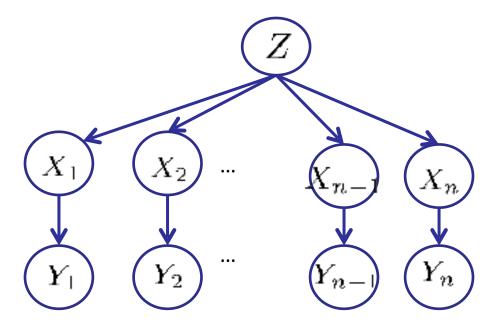
Normalizing over X_3 gives $P(X_3|y_1, y_2, y_3)$.



Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₃ respectively).

Variable Elimination Ordering

■ For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}$, Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

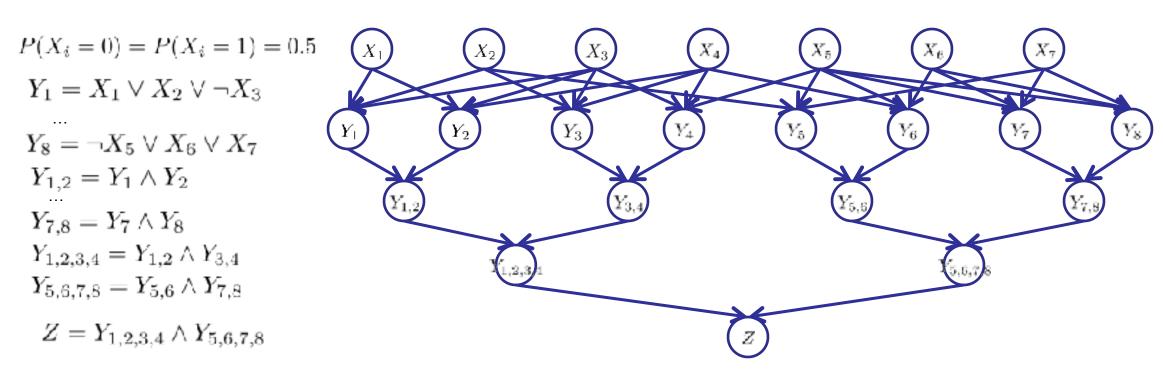
VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

CSP:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6$$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes Nets

- **✓** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - ✓ Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes Nets from Data