CS 343H: Honors Artificial Intelligence

Bayes Nets: Representation

Prof. Peter Stone — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Probabilistic Models

- Models describe how (a portion of) the world works

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - “All models are wrong; but some are useful.”
 – George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information
Independence
Two variables are independent if:

\[\forall x, y : P(x, y) = P(x)P(y) \]

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

\[\forall x, y : P(x|y) = P(x) \]

- We write:

\[X \perp\!\!\!\perp Y \]

- Independence is a simplifying modeling assumption

 - Empirical joint distributions: at best “close” to independent

 - What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
Example: Independence?

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Example: Independence

- N fair, independent coin flips:

<table>
<thead>
<tr>
<th>$P(X_1)$</th>
<th>$P(X_2)$</th>
<th>$P(X_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 0.5</td>
<td>H 0.5</td>
<td>H 0.5</td>
</tr>
<tr>
<td>T 0.5</td>
<td>T 0.5</td>
<td>T 0.5</td>
</tr>
</tbody>
</table>

$P(X_1, X_2, \ldots X_n) = 2^n$
Conditional Independence

- $P(\text{Toothache, Cavity, Catch})$

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - $P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity})$

- The same independence holds if I don’t have a cavity:
 - $P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity})$

- Catch is conditionally independent of Toothache given Cavity:
 - $P(\text{Catch} \mid \text{Toothache, Cavity}) = P(\text{Catch} \mid \text{Cavity})$

- Equivalent statements:
 - $P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity})$
 - $P(\text{Toothache, Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \cdot P(\text{Catch} \mid \text{Cavity})$
 - One can be derived from the other easily
Conditional Independence

- Unconditional (absolute) independence very rare (why?)

- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z if and only if:
 \[
 \forall x, y, z : P(x, y | z) = P(x | z) P(y | z)
 \]
 or, equivalently, if and only if
 \[
 \forall x, y, z : P(x | z, y) = P(x | z)
 \]
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Conditional Independence and the Chain Rule

- Chain rule:
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]

- Trivial decomposition:
 \[
P(\text{Traffic, Rain, Umbrella}) = \]
 \[
P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain, Traffic})\]

- With assumption of conditional independence:
 \[
P(\text{Traffic, Rain, Umbrella}) = \]
 \[
P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})\]

- Bayes nets / graphical models help us express conditional independence assumptions
- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 B: Bottom square is red
 G: Ghost is in the top
- Givens:
 \[P(\ +g\) = 0.5 \]
 \[P(\ -g\) = 0.5 \]
 \[P(\ +t\ |\ +g\) = 0.8 \]
 \[P(\ +t\ |\ -g\) = 0.4 \]
 \[P(\ +b\ |\ +g\) = 0.4 \]
 \[P(\ +b\ |\ -g\) = 0.8 \]

\[
P(\ T,\ B,\ G) = P(G) \cdot P(T|G) \cdot P(B|G)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>B</th>
<th>G</th>
<th>(P(T,B,G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>+b</td>
<td>+g</td>
<td>0.16</td>
</tr>
<tr>
<td>+t</td>
<td>+b</td>
<td>-g</td>
<td>0.16</td>
</tr>
<tr>
<td>+t</td>
<td>-b</td>
<td>+g</td>
<td>0.24</td>
</tr>
<tr>
<td>+t</td>
<td>-b</td>
<td>-g</td>
<td>0.04</td>
</tr>
<tr>
<td>-t</td>
<td>+b</td>
<td>+g</td>
<td>0.04</td>
</tr>
<tr>
<td>-t</td>
<td>+b</td>
<td>-g</td>
<td>0.24</td>
</tr>
<tr>
<td>-t</td>
<td>-b</td>
<td>+g</td>
<td>0.06</td>
</tr>
<tr>
<td>-t</td>
<td>-b</td>
<td>-g</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Bayes Nets: Big Picture
Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

Bayes nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min, we’ll be vague about how these interactions are specified
Example Bayes Net: Insurance
Example Bayes Net: Car
Graphical Model Notation

- **Nodes:** variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arcs:** interactions
 - Similar to CSP constraints
 - Indicate “direct influence” between variables
 - Formally: encode conditional independence (more later)

- **For now:** imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence
Example: Traffic

- **Variables:**
 - R: It rains
 - T: There is traffic

- **Model 1:** Independence

- **Model 2:** Rain causes traffic

- Why is an agent using model 2 better?
Let’s build a causal graphical model!

Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Bayes Net Semantics
Bayes Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values

 \[P(X|a_1 \ldots a_n) \]

- CPT: conditional probability table
- Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Bayes nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

Example:

\[P(\text{+cavity, +catch, -toothache}) \]
Probabilities in BNs

- Why are we guaranteed that setting

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

results in a proper joint distribution?

- Chain rule (valid for all distributions):

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|x_1 \ldots x_{i-1}) \]

\[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- Assume conditional independences:

\[\Rightarrow \text{Consequence:} \]

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies
Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.

Example: Coin Flips

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>...</th>
<th>X_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X_1)$</td>
<td>$P(X_2)$</td>
<td>...</td>
<td>$P(X_n)$</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

$P(h, h, t, h) = 0.5 \times 0.5 \times 0.5 \times 0.5$
Example: Traffic

\[P(R) \]

\[
\begin{array}{c|c}
 & +r & 1/4 \\
 \hline
 +r & 1/4 \\
 -r & 3/4 \\
\end{array}
\]

\[P(T|R) \]

\[
\begin{array}{c|cc}
 & +t & 3/4 \\
 \hline
 +r & 3/4 \\
 -r & 1/2 \\
 \hline
 +r & 1/4 \\
 -r & 1/2 \\
\end{array}
\]

\[P(+r, -t) = 1/4 \times 1/4 \]
Example: Alarm Network

\[
P(+b, +e, -a, +j, -m) = ?
\]

- **Burglary**:
 - \(+b\): 0.001
 - \(-b\): 0.999

- **Earthquake**:
 - \(+e\): 0.002
 - \(-e\): 0.998

- **Alarm**:
 - \(+b\) \(+e\) \(-a\) \(+j\) \(-m\)

| A | J | P(J|A) |
|---|---|-------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

| A | M | P(M|A) |
|---|---|-------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

| B | E | A | P(A|B,E) |
|---|---|---|---------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |
Example: Traffic

- Causal direction

\[
P(R)
\begin{array}{c|c}
+r & 1/4 \\
-r & 3/4 \\
\end{array}
\]

\[
P(T|R)
\begin{array}{c|cc}
+r & +t & 3/4 \\
+r & -t & 1/4 \\
-r & +t & 1/2 \\
-r & -t & 1/2 \\
\end{array}
\]

\[
P(T, R)
\begin{array}{c|cc}
+r & +t & 3/16 \\
+r & -t & 1/16 \\
-r & +t & 6/16 \\
-r & -t & 6/16 \\
\end{array}
\]
Example: Reverse Traffic

- **Reverse causality?**

| | $P(T)$ | $P(R|T)$ |
|------|--------|----------|
| $+t$ | 9/16 | +r: 1/3 |
| $-t$ | 7/16 | -r: 2/3 |

<table>
<thead>
<tr>
<th></th>
<th>$P(T, R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+r$</td>
<td>$+t$: 3/16</td>
</tr>
<tr>
<td>$+r$</td>
<td>$-t$: 1/16</td>
</tr>
<tr>
<td>$-r$</td>
<td>$+t$: 6/16</td>
</tr>
<tr>
<td>$-r$</td>
<td>$-t$: 6/16</td>
</tr>
</tbody>
</table>
Causality?

- When Bayes nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Roof Drips*
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence
 \[
 P(x_i | x_1, \ldots, x_{i-1}) = P(x_i | \text{parents}(X_i))
 \]
- So far: how a Bayes net encodes a joint distribution

- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence

- After that: how to answer numerical queries (inference)