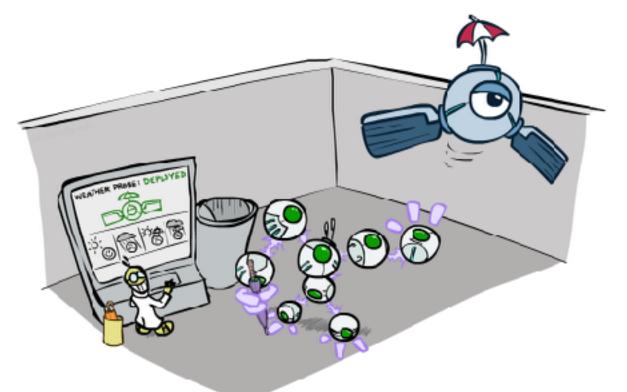
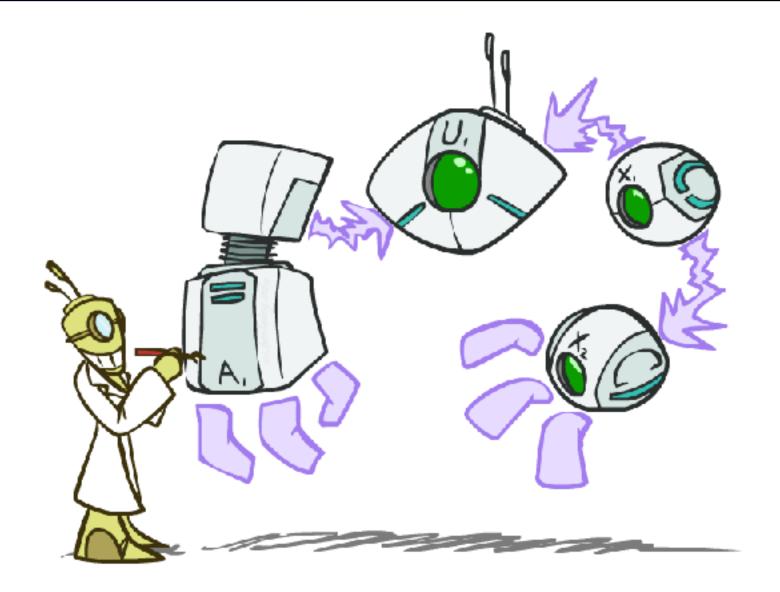
CS 343H: Honors Artificial Intelligence

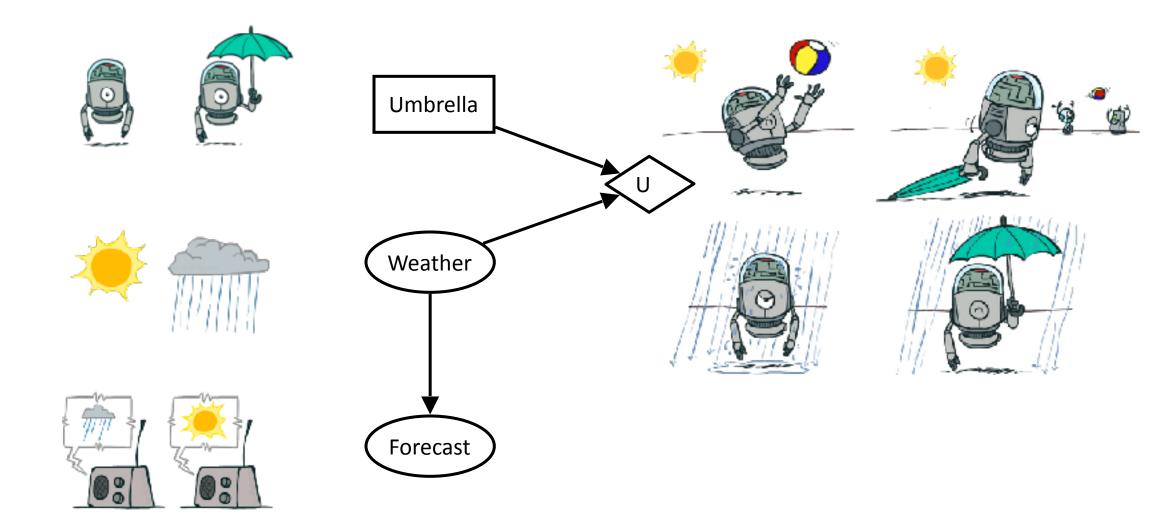
Decision Networks and Value of Perfect Information



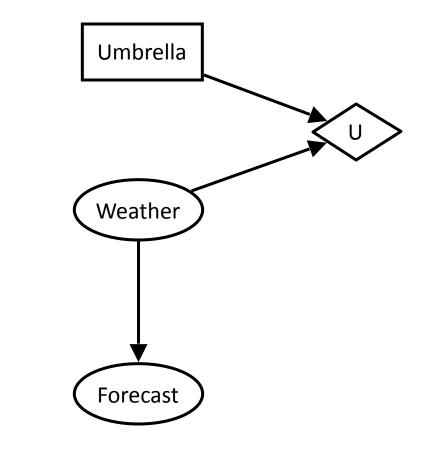
Prof. Peter Stone — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

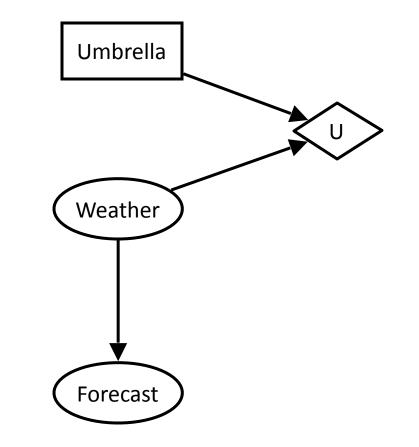


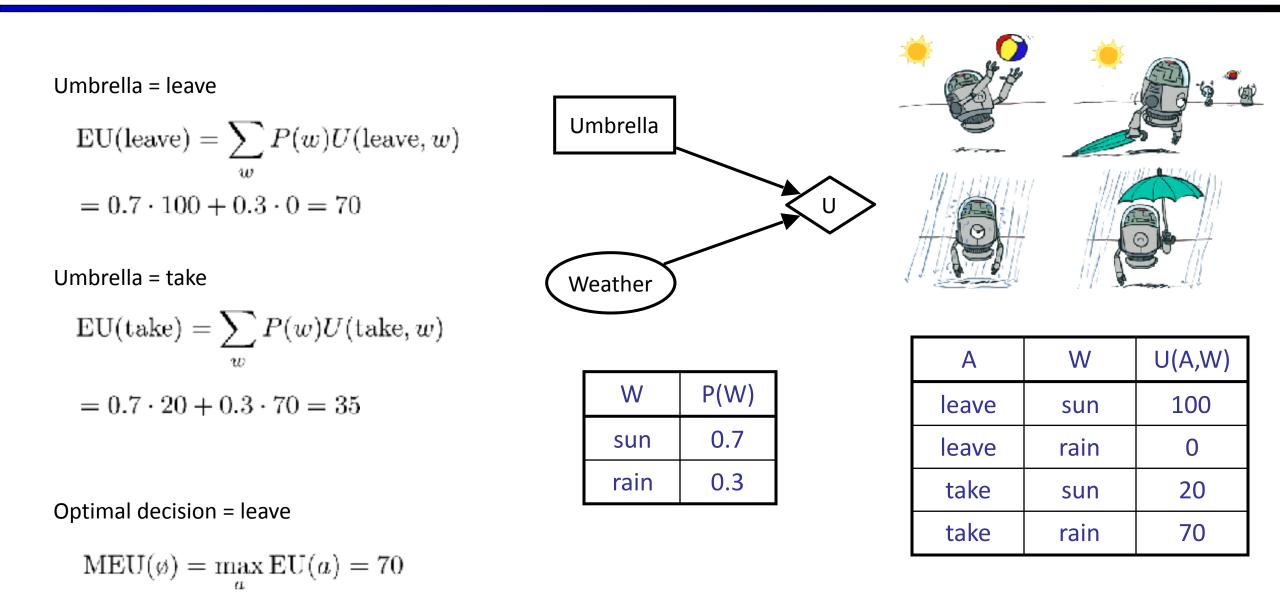


- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
- Chance nodes (just like BNs)
- Actions (rectangles, cannot have parents, act as observed evidence)
- Utility node (diamond, depends on action and chance nodes)

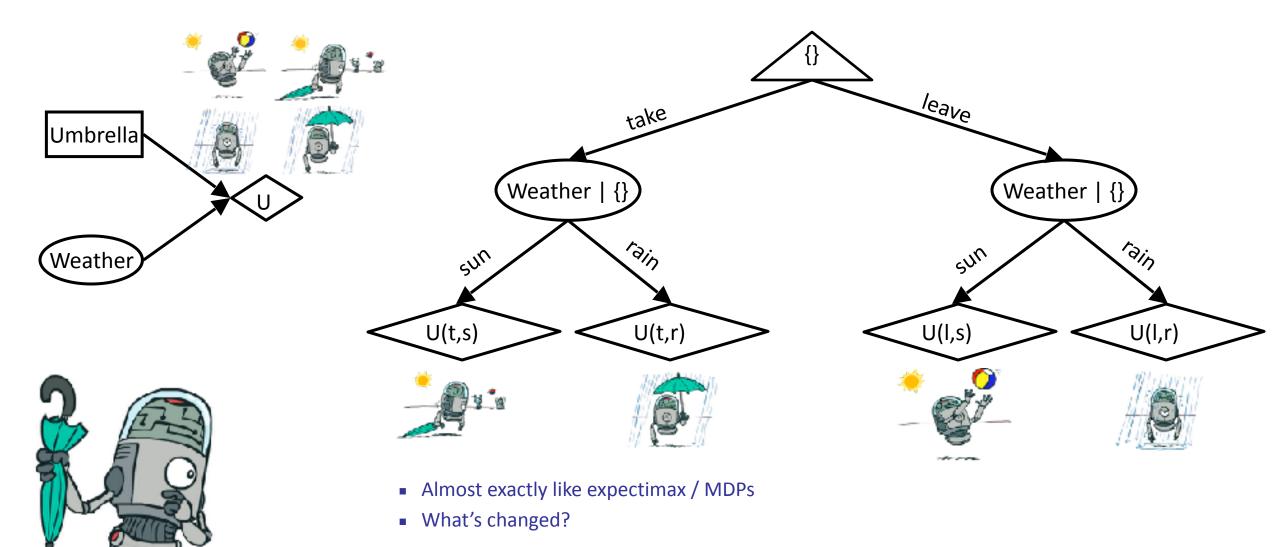


- Action selection
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action

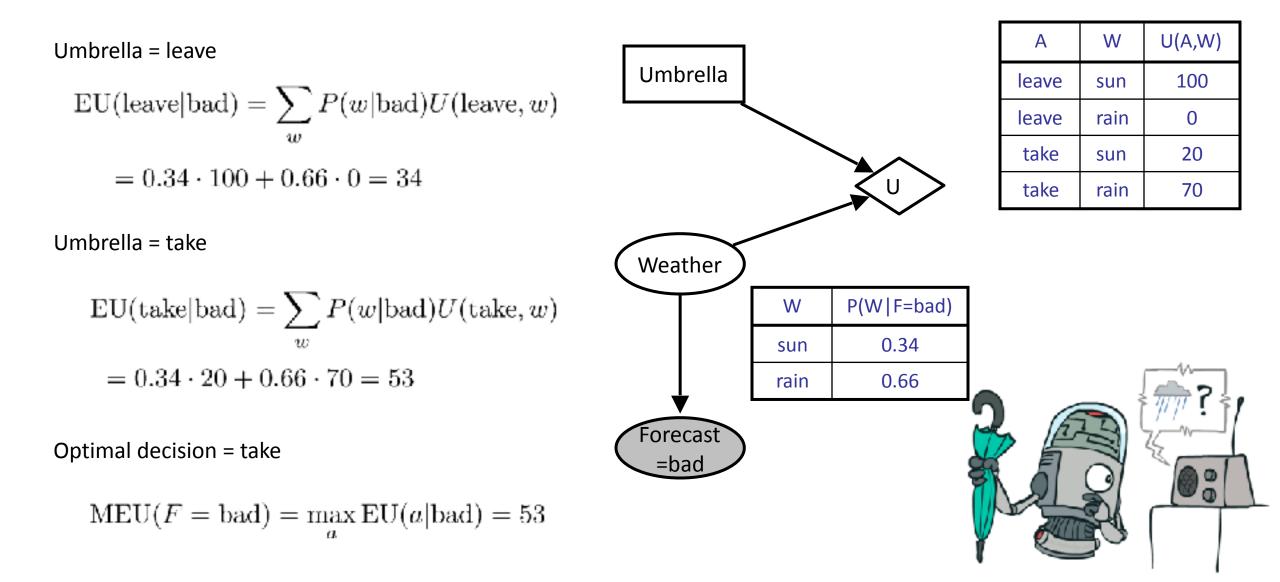




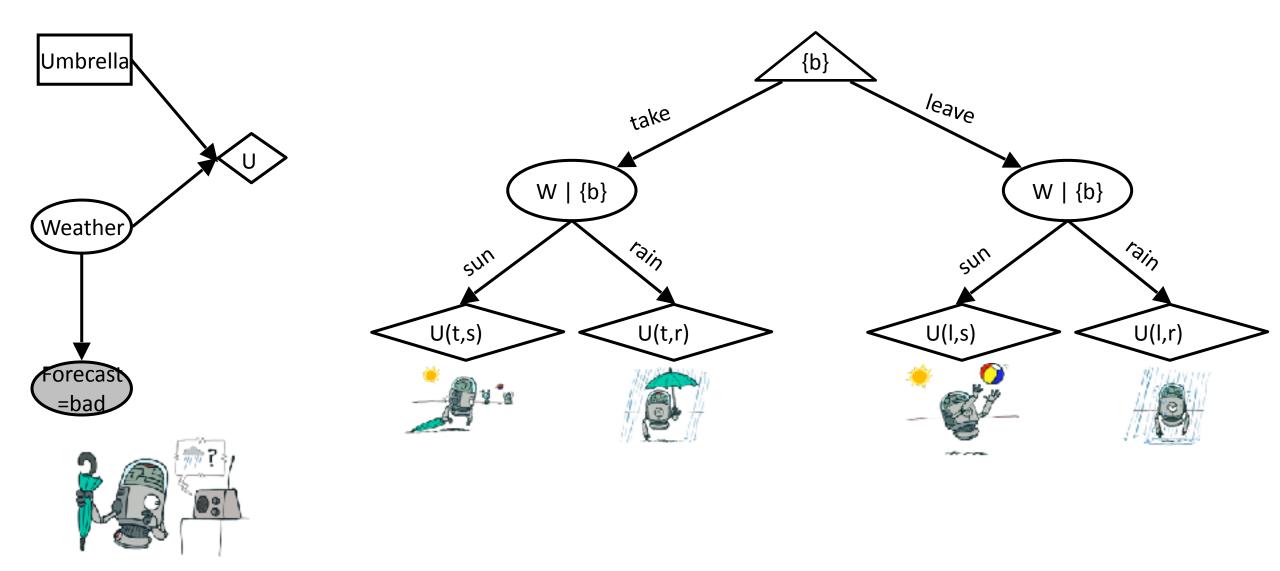
Decisions as Outcome Trees



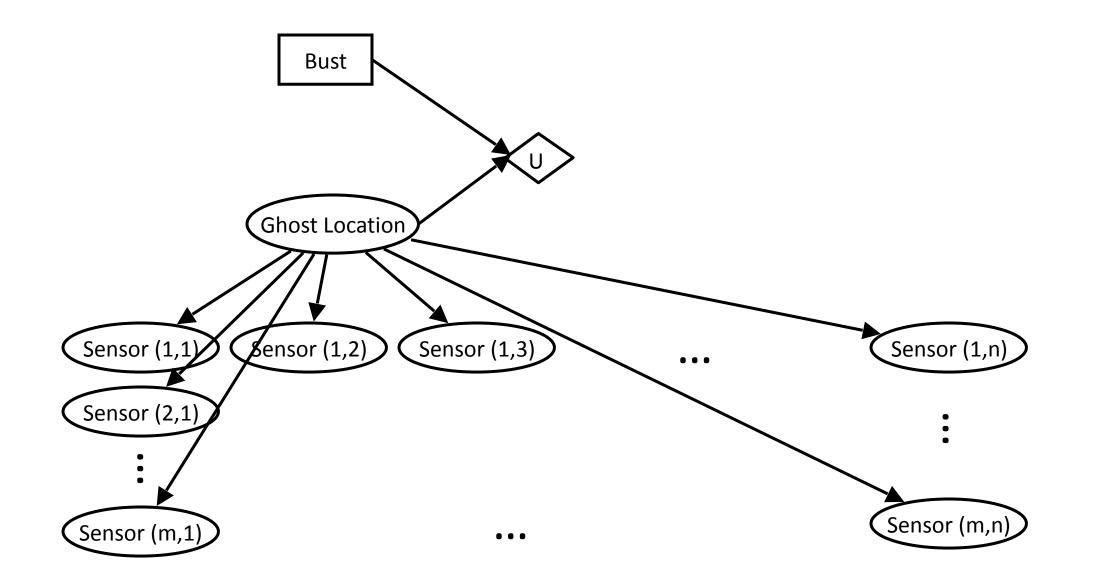
Example: Decision Networks



Decisions as Outcome Trees



Ghostbusters Decision Network

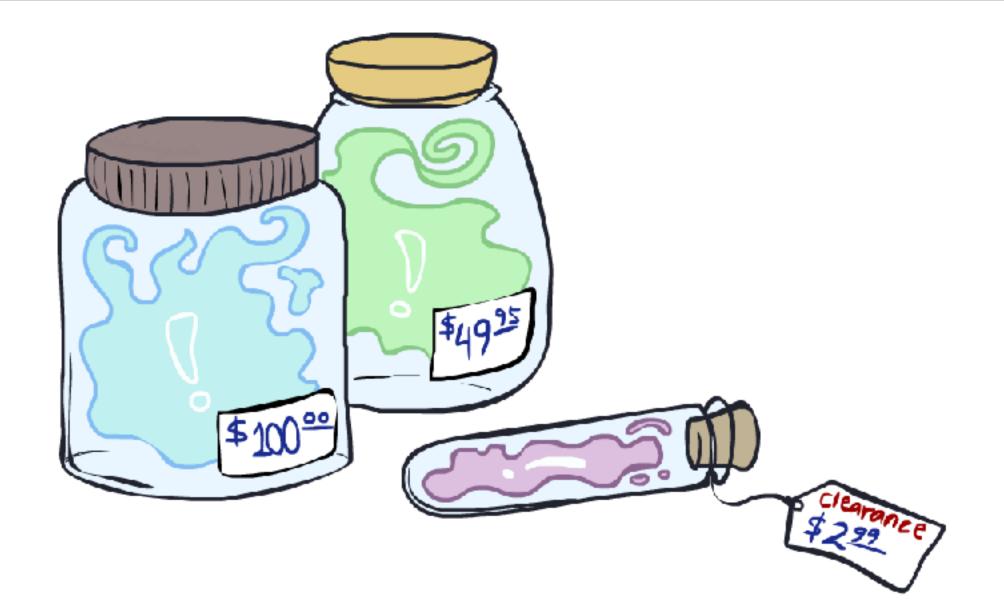


Ghostbusters — Where to measure?

Ghos	nostbusters	are	Da	rici	001	Job		6	1	
	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02

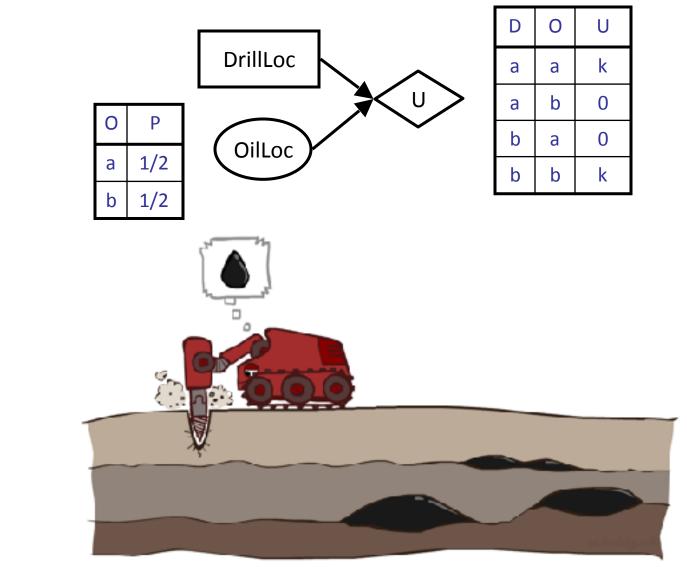
Demo: Ghostbusters

Value of Information



Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2



VPI Example: Weather

MEU with no evidence

$$\mathrm{MEU}(\emptyset) = \max_{a} \mathrm{EU}(a) = 70$$

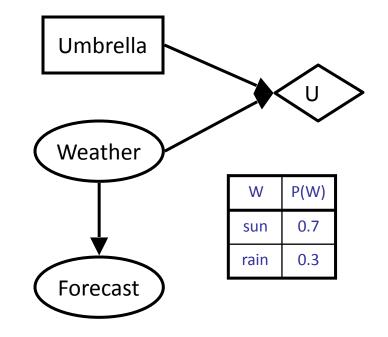
MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

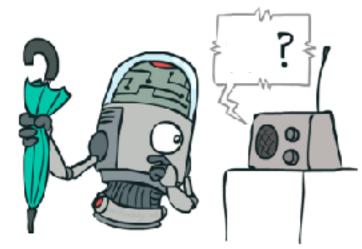
$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

Forecast distribution



А	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

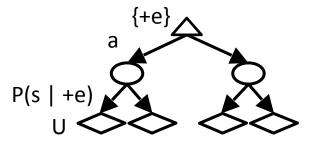
W	P(W F=bad)
sun	0.34
rain	0.66

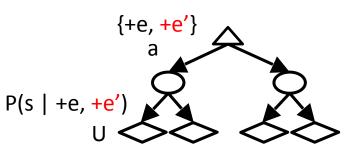


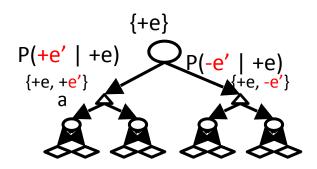
Value of Information

- Assume we have evidence E=e. Value if we act now: $MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$
- Assume we see that E' = e'. Value if we act then: $MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$
- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act: $MEU(e, E') = \sum_{e'} P(e'|e) MEU(e, e')$
- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

VPI(E'|e) = MEU(e, E') - MEU(e)







VPI Properties

Nonnegative

 $\forall E', e : \mathsf{VPI}(E'|e) \ge 0$

Nonadditive

Typically (but not always):

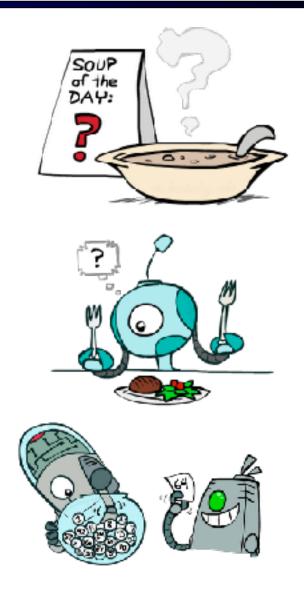
 $\operatorname{VPI}(E_j, E_k|e) \neq \operatorname{VPI}(E_j|e) + \operatorname{VPI}(E_k|e)$

• Order-independent $VPI(E_j, E_k | e) = VPI(E_j | e) + VPI(E_k | e, E_j)$ $= VPI(E_k | e) + VPI(E_j | e, E_k)$

🕅 🗕 🎊 🗕 🏄

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

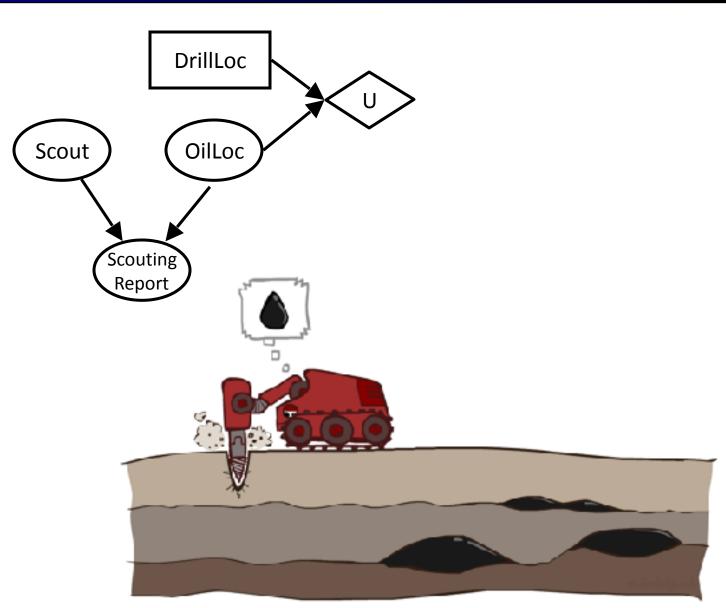


Value of Imperfect Information?

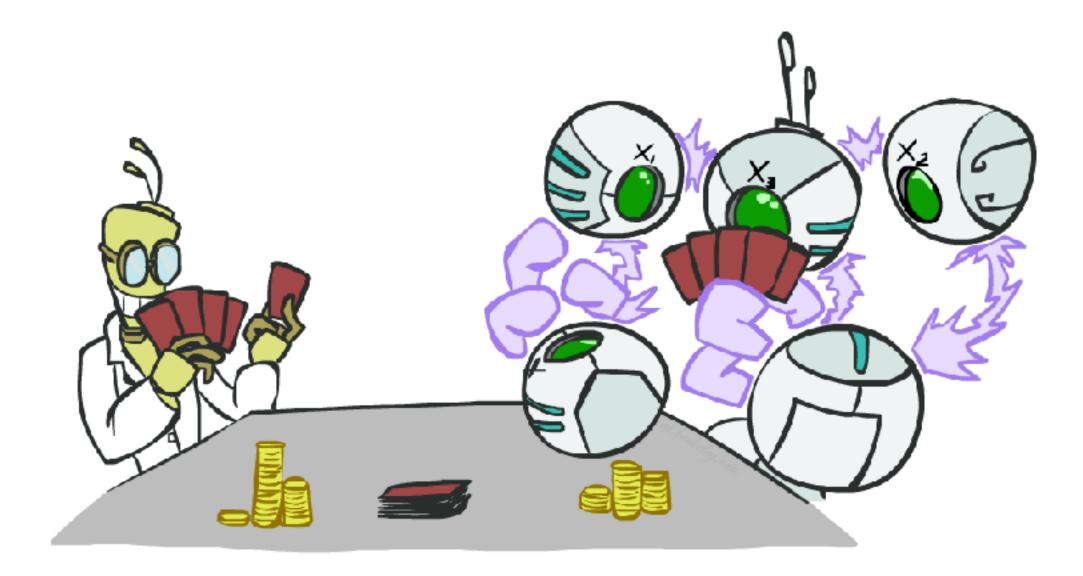
- No such thing
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(OilLoc) ?
- VPI(ScoutingReport) ?
- VPI(Scout) ?
- VPI(Scout | ScoutingReport) ?

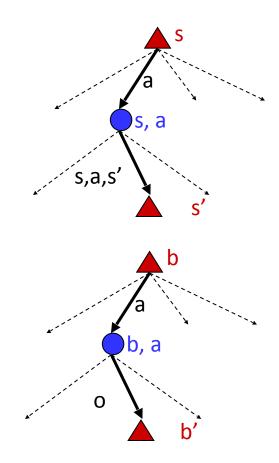


POMDPs



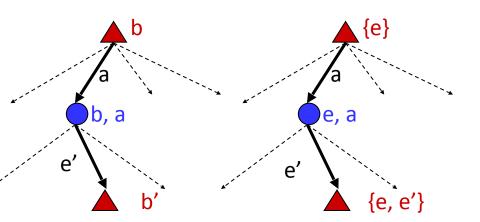
POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition function P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s')
- POMDPs add:
 - Observations O
 - Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)



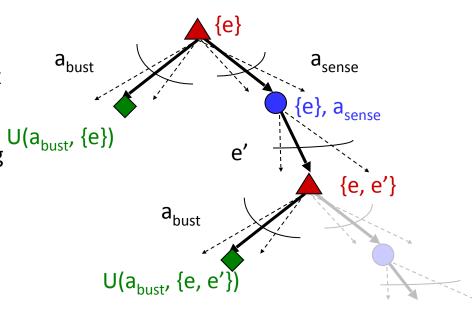
Example: Ghostbusters

- In (static) Ghostbusters:
 - Belief state determined by evidence to date {e}
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict what new evidence will be gained, given past evidence and the action taken



Solving POMDPs

- One way: use truncated expectimax to compute approximate value of actions
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!



Video of Demo Ghostbusters with VPI

	1	CHORTS REMAINING: BIRTS REMAINING: SCHOR: MESSACES :	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
		BUST TIME+1	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
dule>			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
r eannot rpase≻pyt i, 5, 6,			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02

More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSACE-) hard
- Most real problems are POMDPs, but we can rarely solve then in general!

