Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Late assignments accepted until the night before the exam (5/12)

- Final: Wednesday May 13th, 2pm-5pm
 - Open notes - handwritten
 - No books, no printouts
Final Exam

- Wednesday May 13th, 2pm-5pm
Final Exam

- Wednesday May 13th, 2pm-5pm
- Kim and I will proctor (I will need to leave for part in the middle)
Final Exam

• Wednesday May 13th, 2pm-5pm

• Kim and I will proctor (I will need to leave for part in the middle)
 – Available by appointment on Tuesday if you want to meet
Final Exam

- Wednesday May 13th, 2pm-5pm
- Kim and I will proctor (I will need to leave for part in the middle)
 - Available by appointment on Tuesday if you want to meet
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
Final Exam

- Wednesday May 13th, 2pm-5pm
- Kim and I will proctor (I will need to leave for part in the middle)
 - Available by appointment on Tuesday if you want to meet
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
Final Exam

- Wednesday May 13th, 2pm-5pm
- Kim and I will proctor (I will need to leave for part in the middle)
 - Available by appointment on Tuesday if you want to meet
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1 hour and 15 minutes
Final Exam

- Wednesday May 13th, 2pm-5pm
- Kim and I will proctor (I will need to leave for part in the middle)
 - Available by appointment on Tuesday if you want to meet
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1 hour and 15 minutes
- Sample - Dan Klein’s Spring 2009 exam with solutions
Tournament Results
Tournament Results

• 3. Team (Tres)
Tournament Results

- 3. TeamTeam (Tres)
- 2. CogentAgents (Colin)
Tournament Results

• 3. TeamTeam (Tres)

• 2. CogentAgents (Colin)

• 1. ArchimedesAndHerodotusAgent (Andrew and Paul)

Congratulations to all!

Peter Stone
Pending questions

• Is bounded optimality important?
Pending questions

• Is bounded optimality important?

• AI progress - bound more by software or hardware?
Pending questions

- Is bounded optimality important?
- AI progress - bound more by software or hardware?
- What if autonomous agents disagree?
Pending questions

- Is bounded optimality important?
- AI progress - bound more by software or hardware?
- What if autonomous agents disagree?
- How would programs learn to learn?
Pending questions

- Is bounded optimality important?
- AI progress - bound more by software or hardware?
- What if autonomous agents disagree?
- How would programs learn to learn?
- What does the scientific community think about the singularity?
 - Doing anything about it?
Pending questions

• Is bounded optimality important?
• AI progress - bound more by software or hardware?
• What if autonomous agents disagree?
• How would programs learn to learn?
• What does the scientific community think about the singularity?
 – Doing anything about it?
• Are AI researchers scared?
My Opinions on...

- Can machines be conscious?
My Opinions on...

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
My Opinions on . . .

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
My Opinions on . . .

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
 - If so, will it lead to an apocalypose?
My Opinions on . . .

• Can machines be conscious?
• Is there anything special about human intelligence (or are we essentially robots?)
• Will we get hyper-intelligent AI?
 – If so, will it lead to an apocalypsoe?
 – Will technology ever "control" us?
 – Have cars already done that?
My Opinions on . . .

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
 - If so, will it lead to an apocalypose?
 - Will technology ever "control" us?
 - Have cars already done that?
 - If so, will it be how humans do it?
My Opinions on . . .

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
 - If so, will it lead to an apocalypose?
 - Will technology ever "control" us?
 - Have cars already done that?
 - If so, will it be how humans do it?
 - How important is it that we understand algorithms?
My Opinions on . . .

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
 - If so, will it lead to an apocalypose?
 - Will technology ever "control" us?
 - Have cars already done that?
 - If so, will it be how humans do it?
 - How important is it that we understand algorithms?
- What will happen in 20-50 years?
My Opinions on . . .

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
 - If so, will it lead to an apocalypose?
 - Will technology ever "control" us?
 - Have cars already done that?
 - If so, will it be how humans do it?
 - How important is it that we understand algorithms?
- What will happen in 20-50 years?
 - RoboCup soccer goal - is it possible?
My Opinions on...

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
 - If so, will it lead to an apocalypose?
 - Will technology ever "control" us?
 - Have cars already done that?
 - If so, will it be how humans do it?
 - How important is it that we understand algorithms?
- What will happen in 20-50 years?
 - RoboCup soccer goal - is it possible?
- Current progress - are we "just" climbing a tree?
My Opinions on . . .

- Can machines be conscious?
- Is there anything special about human intelligence (or are we essentially robots?)
- Will we get hyper-intelligent AI?
 - If so, will it lead to an apocalypose?
 - Will technology ever "control" us?
 - Have cars already done that?
 - If so, will it be how humans do it?
 - How important is it that we understand algorithms?
- What will happen in 20-50 years?
 - RoboCup soccer goal - is it possible?
- Current progress - are we "just" climbing a tree?
- Is AI is the right name for the field?
Question

- Would you have rather been born 100 years earlier or 100 years later?
• Does it matter to you if our “descendants” aren’t human?
Question

• If an AI technology runs amok, who is responsible?
Question

- If an AI technology runs amok, who is responsible?
- Are there some types of research we shouldn’t do?
Question

• Can computers perfectly simulate a human’s decision-making (weak AI)?
Question

- Can computers perfectly simulate a human’s decision-making (weak AI)?
- Will computers ever be better than people at everything?
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 – Find an optimal plan (or solution)
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
Course Recap

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next**: MDPs —
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 – Find an optimal plan (or solution)
 – Best thing to do from the current state
 – Know transition and cost (reward) functions
 – Either execute complete solution (deterministic) or search again at every step
 – **Know current state**

• **Next:** MDPs — towards reinforcement learning
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next**: MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

• **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

• **Before Midterm:** Reinforcement learning
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

- **Before Midterm:** Reinforcement learning
 - Policy without knowing transition or reward functions
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 – Find an optimal plan (or solution)
 – Best thing to do from the current state
 – Know transition and cost (reward) functions
 – Either execute complete solution (deterministic) or search again at every step
 – **Know current state**

• **Next:** MDPs — towards reinforcement learning
 – Still know transition and reward function
 – Looking for a **policy** — optimal action from every state

• **Before Midterm:** Reinforcement learning
 – Policy without knowing transition or reward functions
 – **Still know state**
Course Recap (cont.)

• **Probabilistic Reasoning:** Now state is unknown

• Bayesian networks – state estimation/inference
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- Prior, net structure, and CPT’s known
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Utilities
Course Recap (cont.)

- **Probabilistic Reasoning**: Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5**: Utilities
 - **Week 9**: Conditional independence and inference (exact and approximate)
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
Course Recap (cont.)

- **Probabilistic Reasoning**: Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5**: Utilities
 - **Week 9**: Conditional independence and inference (exact and approximate)
 - **Week 10**: Exact state estimation over time
 - **Week 11**: Approximate state estimation over time
Course Recap (cont.)

• **Probabilistic Reasoning**: Now state is unknown

• Bayesian networks – state estimation/inference

• **Prior, net structure, and CPT’s known**
 – **Week 5**: Utilities
 – **Week 9**: Conditional independence and inference (exact and approximate)
 – **Week 10**: Exact state estimation over time
 – **Week 11**: Approximate state estimation over time

• **Week 12**: What if they’re not known?
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time
- **Week 12:** What if they’re not known?
 - Also Bayesian networks for **classification**
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 5:** Utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time

- **Week 12:** What if they’re not known?
 - Also Bayesian networks for **classification**
 - A type of **machine learning**
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
Course Recap (cont.)

• **Week 13:** Machine Learning
 – Just a taste – focus on concept learning = classification
 – Perceptrons, SVMs, MIRA
 – Didn’t cover unsupervised learning (in readings)
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning (in readings)

- **Week 14:** Classical planning
 - Reasoning with first order representations
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning (in readings)

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
Course Recap (cont.)

• **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning (in readings)

• **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning (in readings)

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.

- **Week 15:** Philosophical foundations and ethics
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning (in readings)

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.

- **Week 15:** Philosophical foundations and ethics
 - It’s all about building agents
 - Sense, decide, act

Peter Stone
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning (in readings)

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.

- **Week 15:** Philosophical foundations and ethics
 - It’s all about building agents
 - Sense, decide, act
 - Maximize expected utility
Topics not covered

- Constraint satisfaction
 (Chapter 6)

- Knowledge representation and reasoning
 (Chapters 7-9, 11, 12)

- Game theory and auctions
 (Sections 17.5, 17.6)

- Aspects of learning
 (Chapters 18, 19)

- Natural language
 (Chapters 22, 23)

- Vision
 (Chapter 24)

- Robotics
 (Chapter 25)
Surveys

- Kim’s and my surveys
- Positive and negative feedback useful
Surveys

• Kim’s and my surveys

• Positive and negative feedback useful

• Invitation to send more feedback by email
Surveys

- Kim’s and my surveys

- Positive and negative feedback useful

- Invitation to send more feedback by email
 - If/when I teach the course again, how should it change?
Surveys

- Kim’s and my surveys

- Positive and negative feedback useful

- Invitation to send more feedback by email
 - If/when I teach the course again, how should it change?

- Most important: course rating, instructor rating, written comments
My Perspective

- I’ve enjoyed teaching this class!
My Perspective

• I’ve enjoyed teaching this class!

• I’ve been impressed by the levels of questions and understanding
My Perspective

- I’ve enjoyed teaching this class!

- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
My Perspective

- I’ve enjoyed teaching this class!
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Kim for handling all the programming assignments!
My Perspective

• I’ve enjoyed teaching this class!

• I’ve been impressed by the levels of questions and understanding
 – You kept me on my toes
 – I learned tons!

• Thanks to Kim for handling all the programming assignments!

• I’m proud of all of you for sticking with it through what I think was a demanding course
My Perspective

- I’ve enjoyed teaching this class!
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Kim for handling all the programming assignments!
- I’m proud of all of you for sticking with it through what I think was a demanding course

THANKS!!!