CS343
Artificial Intelligence

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Morning, Colleagues
Good Morning, Colleagues

Are there any questions?
Logistics

- Questions about the syllabus?
Logistics

- Questions about the syllabus?
- Class registration
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza — useful discussion yesterday
Logistics

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza — useful discussion yesterday
 - CC Kim (houck@cs), and me on everything
Logistics

• Questions about the syllabus?

• Class registration

• Problems with the assignment?

• Piazza — useful discussion yesterday
 – CC Kim (houck@cs), and me on everything

• Assignments up through week 3
Logistics

• Questions about the syllabus?
• Class registration
• Problems with the assignment?
• Piazza — useful discussion yesterday
 – CC Kim (houck@cs), and me on everything
• Assignments up through week 3
Example Intelligent (autonomous) Agents

- Autonomous robot
Example Intelligent (autonomous) Agents

- Autonomous robot

- Information gathering agent
 - Find me the cheapest?
Example Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
Example Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
Example Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
Example Intelligent (autonomous) Agents

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
- Computer-game-playing agent
Not Intelligent Agents

- Thermostat
- Telephone
- Answering machine
- Pencil
- Java object
Environments

Environment \rightarrow sensations, actions
Environments

Environment \implies sensations, actions

• fully observable vs. partially observable (accessible)
Environments

- Environment \mapsto sensations, actions
- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
Environments

Environment \Rightarrow sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
Environments

Environment \implies\ sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
Environments

Environment \iff sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
- static vs. dynamic
Environments

Environment \rightarrow sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
- static vs. dynamic
- discrete vs. continuous
Environments

- Environment \rightleftharpoons sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
- static vs. dynamic
- discrete vs. continuous
- known vs. unknown
Student Examples

- game bot
- robot waiter
- bowling robot, ping pong player
- kiva robots, Mars rover, robot suturing agent
- Wall-E
- Words with friends word checker
- thermostat
- trading agent
- Siri
- Briggo
- piano playing agent
- unhappiness agent
BE a learning agent
BE a learning agent

- You, as a group, act as a learning agent
BE a learning agent

- You, as a group, act as a learning agent
- Actions: Wave, Stand, Clap
BE a learning agent

- You, as a group, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
BE a learning agent

- You, as a group, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
- **Goal**: Find an optimal *policy*
BE a learning agent

- You, as a group, act as a learning agent
- **Actions**: Wave, Stand, Clap
- **Observations**: colors, reward
- **Goal**: Find an optimal *policy*
 - Way of selecting actions that gets you the most reward
How did you do it?
How did you do it?

- What is your policy?
- What does the world look like?
How did you do it?

- What is your policy?
- What does the world look like?
Formalizing what Just Happened

Knowns:
Formalizing what Just Happened

Knowns:

- $\mathcal{O} = \{\text{Blue, Red, Green, Black, \ldots}\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{\text{Wave, Clap, Stand}\}$

\[o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \]
Formalizing what Just Happened

Knocks:

- $O = \{\text{Blue, Red, Green, Black, \ldots}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$$

Unknowns:

Peter Stone
Formalizing what Just Happened

Knowns:
- \(O = \{\text{Blue, Red, Green, Black, \ldots}\} \)
- Rewards in \(\mathbb{R} \)
- \(A = \{\text{Wave, Clap, Stand}\} \)

Unknowns:
- \(S = 4 \times 3 \) grid
- \(R : S \times A \mapsto \mathbb{R} \)
- \(P = S \mapsto O \)
- \(T : S \times A \mapsto S \)
Formalizing what Just Happened

Knowns:
• \(\mathcal{O} = \{ \text{Blue, Red, Green, Black, \ldots} \} \)
• Rewards in \(\mathbb{R} \)
• \(\mathcal{A} = \{ \text{Wave, Clap, Stand} \} \)

\[o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots \]

Unknowns:
• \(\mathcal{S} = 4 \times 3 \) grid
• \(\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R} \)
• \(\mathcal{P} = \mathcal{S} \rightarrow \mathcal{O} \)
• \(\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S} \)

\[o_i = \mathcal{P}(s_i) \]
Formalizing what Just Happened

Knowns:

- \(\mathcal{O} = \{ \text{Blue, Red, Green, Black, \ldots} \} \)
- Rewards in \(\mathbb{R} \)
- \(\mathcal{A} = \{ \text{Wave, Clap, Stand} \} \)

Unknowns:

- \(S = 4 \times 3 \) grid
- \(\mathcal{R} : S \times \mathcal{A} \mapsto \mathbb{R} \)
- \(\mathcal{P} = S \mapsto \mathcal{O} \)
- \(\mathcal{T} : S \times \mathcal{A} \mapsto S \)

\[o_i = \mathcal{P}(s_i) \quad r_i = \mathcal{R}(s_i, a_i) \]
Formalizing what Just Happened

Knouns:

- $O = \{\text{Blue, Red, Green, Black, \ldots}\}$
- Rewards in \mathbb{R}
- $A = \{\text{Wave, Clap, Stand}\}$

\[
o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots
\]

Unknowns:

- $S = 4 \times 3$ grid
- $R : S \times A \mapsto \mathbb{R}$
- $P = S \mapsto O$
- $T : S \times A \mapsto S$

\[
o_i = P(s_i) \quad r_i = R(s_i, a_i) \quad s_{i+1} = T(s_i, a_i)
\]
Describe the environment

Environment \rightarrow sensations, actions
Describe the environment

Environment ➝ sensations, actions

- fully observable vs. partially observable (accessible)
Describe the environment

Environment \rightarrow sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
Describe the environment

Environment \rightarrow sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
Describe the environment

- Environment \implies sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
Describe the environment

Environment \rightarrow sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
- static vs. dynamic
Describe the environment

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
- static vs. dynamic
- discrete vs. continuous
Describe the environment

Environment \Rightarrow sensations, actions

- fully observable vs. partially observable (accessible)
- single-agent vs. multiagent
- deterministic vs. non-deterministic (stochastic)
- episodic vs. sequential
- static vs. dynamic
- discrete vs. continuous
- known vs. unknown
Next week: Search

- Textbook readings
- Responses both Monday and Wednesday
- Python tutorial due