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Logistics

• Any questions about the search project?

• Please give page numbers in responses, use correct
headings

• Exercise responses not all checked

• Next week’s readings posted: adversarial search

• Future readings

• Midterm and final
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Relaxing the Assumptions

• Nondeterministic actions: AND-OR search

• Partial observations: Belief states

• Unknown environments: Online search

• Adversaries: Next week....
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Pending Questions

• Ridges in state space

• AND-OR graphs

• Optimality of online agents

• Partially observable *and* unknown?

• How to know belief state in unknown environment?

• Linear programming
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Continuous Local Search to learn fast
walk

Goal: Enable an Aibo to walk as fast as possible

• Start with a parameterized walk

• Learn fastest possible parameters

• No simulator available:

− Learn entirely on robots
− Minimal human intervention

Peter Stone
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Walking Aibos

• Walks that “come with” Aibo are slow

• RoboCup soccer: 25+ Aibo teams internationally

− Motivates faster walks

Hand-tuned gaits [2003] Learned gaits
German UT Austin Hornby et al. Kim & Uther
Team Villa UNSW [1999] [2003]

230 mm/s 245 254 170 270 (±5)
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A Parameterized Walk
• Developed from scratch as part of UT Austin Villa 2003

• Trot gait with elliptical locus on each leg

Peter Stone



Locus Parameters
z

x

y

• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values

12 continuous parameters
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Locus Parameters
z

x

y

• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values

12 continuous parameters

• Hand tuning by April, ’03: 140 mm/s
• Hand tuning by July, ’03: 245 mm/s
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Parameters To Learn
Parameter Initial

Value
Front ellipse:

(height) 4.2
(x offset) 2.8
(y offset) 4.9

Rear ellipse:
(height) 5.6

(x offset) 0.0
(y offset) -2.8

Ellipse length 4.893
Ellipse skew multiplier 0.035
Front height 7.7
Rear height 11.2
Time to move

through locus 0.704
Time on ground 0.5
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Experimental Setup
• Policy π = {θ1, . . . , θ12}, V (π) = walk speed when using π

• Training Scenario

− Robots time themselves traversing fixed distance
− Multiple traversals (3) per policy to account for noise
− Multiple robots evaluate policies simultaneously
− Off-board computer collects results, assigns policies

No human intervention except battery changes

Peter Stone
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Gradient Estimation
π1 π2 − πN Score

−ε1


θ1 − ε1 . . . 11.5

θ1 − ε1 . . . 12.7

. . .

⇒ Average: 12.1

+0


θ1 + 0 . . . 12.3

θ1 + 0 . . . 13.7

. . .

⇒ Average: 13.2

+ε1


θ1 + ε1 . . . 15.5

θ1 + ε1 . . . 14.7

. . .

⇒ Average: 14.9
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Taking a step

Ai =


0 if Avg+0,i > Avg+ε,i and

Avg+0,i > Avg−ε,i
Avg+ε,i −Avg−ε,i otherwise

(1)
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Taking a step

Ai =


0 if Avg+0,i > Avg+ε,i and

Avg+0,i > Avg−ε,i
Avg+ε,i −Avg−ε,i otherwise

(1)

• Normalize A, multiply by scalar step-size η

• π = π + ηA

Peter Stone



Experiments
• Started from stable, but fairly slow gait

• Used 3 robots simultaneously

• Each iteration takes 45 traversals, 71
2 minutes
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Experiments
• Started from stable, but fairly slow gait

• Used 3 robots simultaneously

• Each iteration takes 45 traversals, 71
2 minutes

Before learning After learning

• 24 iterations = 1080 field traversals, ≈ 3 hours
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Results
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• Additional iterations didn’t help
• Spikes: evaluation noise? large step size?
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Learned Parameters
Parameter Initial ε Best

Value Value
Front ellipse:

(height) 4.2 0.35 4.081
(x offset) 2.8 0.35 0.574
(y offset) 4.9 0.35 5.152

Rear ellipse:
(height) 5.6 0.35 6.02

(x offset) 0.0 0.35 0.217
(y offset) -2.8 0.35 -2.982

Ellipse length 4.893 0.35 5.285
Ellipse skew multiplier 0.035 0.175 0.049
Front height 7.7 0.35 7.483
Rear height 11.2 0.35 10.843
Time to move

through locus 0.704 0.016 0.679
Time on ground 0.5 0.05 0.430
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Algorithmic Comparison, Robot Port

Before learning After learning
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Summary

• Used policy gradient RL to learn fastest Aibo walk

• All learning done on real robots

• No human itervention (except battery changes)

Peter Stone



Grasping the Ball

• Three stages: walk to ball; slow down; lower chin

• Head proprioception, IR chest sensor 7→ ball distance

• Movement specified by 4 parameters
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Grasping the Ball

• Three stages: walk to ball; slow down; lower chin

• Head proprioception, IR chest sensor 7→ ball distance

• Movement specified by 4 parameters

Brittle!
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Parameterization
• slowdown dist: when to slow down

• slowdown factor: how much to slow down

• capture angle: when to stop turning

• capture dist: when to put down head

Peter Stone



Learning the Chin Pinch

• Binary, noisy reinforcement signal: multiple trials

• Robot evaluates self: no human intervention

Peter Stone



Results

• Evaluation of policy gradient, hill climbing, amoeba
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What it learned

Policy slowdown slowdown capture capture Success
dist factor angle dist rate

Initial 200mm 0.7 15.0o 110mm 36%
Policy gradient 125mm 1 17.4o 152mm 64%

Amoeba 208mm 1 33.4o 162mm 69%
Hill climbing 240mm 1 35.0o 170mm 66%

Peter Stone



Instance of Layered Learning
• For domains too complex for tractably mapping state

features S 7−→ outputs O

• Hierarchical subtask decomposition given: {L1, L2, . . . , Ln}
• Machine learning: exploit data to train, adapt

• Learning in one layer feeds into next layer

Individual Behaviors

Team Behaviors

Adversarial Behaviors

Environment

High Level Goals

Opportunities
Machine LearningMulti-Agent Behaviors

World State
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