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• First weeks: search (BFS, A*, minimax, alpha-beta)
− Find an optimal plan (or solution)
− Best thing to do from the current state
− Assume we know transition function and cost (reward)

function
− Either execute complete solution (deterministic) or

search again at every step
• This week: MDPs — towards reinforcement learning
• Still know transition and reward function
• Looking for a policy — optimal action from every state

• Next week: Reinforcement learning
− Optimal policy without knowing transition or reward

function
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Pending Questions
• episodic -> continuous?
• stationary policy vs. prefs?
• optimal policy independent of start - requires discount?

Or just inf H?
• What makes a policy proper?
• Who imposes finite H?
• What if |S| is too large?
• VI convergence?
• VI? PI? how choose?
• 17.10(c)
• How choose initial policy?
• Modified PI - lose optimality?
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