CS343 Artificial Intelligence

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Good Afternoon, Colleagues

Are there any questions?

Logistics

Tournament qualification underway

Logistics

- Tournament qualification underway
- Tracking assignment due in two days
- Classification assignment to be assigned on Thursday

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state
- Next: MDPs —

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state
- Next: MDPs towards reinforcement learning

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state
- Next: MDPs towards reinforcement learning
 - Still know transition and reward function

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state
- Next: MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a policy optimal action from every state

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state
- Next: MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a policy optimal action from every state
- Before Midterm: Reinforcement learning

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state
- Next: MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a policy optimal action from every state
- Before Midterm: Reinforcement learning
 - Policy without knowing transition or reward functions

- First weeks: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state
- Next: MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a policy optimal action from every state
- Before Midterm: Reinforcement learning
 - Policy without knowing transition or reward functions
 - Still know state

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known
 - Week 5: Probability and utilities

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known
 - Week 5: Probability and utilities
 - Week 9: Conditional independence and inference (exact and approximate)

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known
 - Week 5: Probability and utilities
 - Week 9: Conditional independence and inference (exact and approximate)
 - Week 10: Exact state estimation over time

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known
 - Week 5: Probability and utilities
 - Week 9: Conditional independence and inference (exact and approximate)
 - Week 10: Exact state estimation over time
 - Week 11: Approximate state estimation over time

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known
 - Week 5: Probability and utilities
 - Week 9: Conditional independence and inference (exact and approximate)
 - Week 10: Exact state estimation over time
 - Week 11: Approximate state estimation over time
- This week: What if they're not known?

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known
 - Week 5: Probability and utilities
 - Week 9: Conditional independence and inference (exact and approximate)
 - Week 10: Exact state estimation over time
 - Week 11: Approximate state estimation over time
- This week: What if they're not known?
 - Also Bayesian networks for classification

- Probabilistic Reasoning: Now state is unknown
- Bayesian networks state estimation/inference
- Prior, net structure, and CPT's known
 - Week 5: Probability and utilities
 - Week 9: Conditional independence and inference (exact and approximate)
 - Week 10: Exact state estimation over time
 - Week 11: Approximate state estimation over time
- This week: What if they're not known?
 - Also Bayesian networks for classification
 - A type of machine learning

- Next week: Machine Learning
 - Just a taste focus on concept learning = classification

- Next week: Machine Learning
 - Just a taste focus on concept learning = classification
- Week 14: Classical planning
 - Reasoning with first order representations

- Next week: Machine Learning
 - Just a taste focus on concept learning = classification
- Week 14: Classical planning
 - Reasoning with first order representations
 - So far we've dealt with propositions

- Next week: Machine Learning
 - Just a taste focus on concept learning = classification
- Week 14: Classical planning
 - Reasoning with first order representations
 - So far we've dealt with propositions
 - Back to known transitions, known state, etc.

- Next week: Machine Learning
 - Just a taste focus on concept learning = classification
- Week 14: Classical planning
 - Reasoning with first order representations
 - So far we've dealt with propositions
 - Back to known transitions, known state, etc.
- Week 15: Philosophical foundations and ethics

- Next week: Machine Learning
 - Just a taste focus on concept learning = classification
- Week 14: Classical planning
 - Reasoning with first order representations
 - So far we've dealt with propositions
 - Back to known transitions, known state, etc.
- Week 15: Philosophical foundations and ethics

It's all about building agents

Sense, decide, act

- Next week: Machine Learning
 - Just a taste focus on concept learning = classification
- Week 14: Classical planning
 - Reasoning with first order representations
 - So far we've dealt with propositions
 - Back to known transitions, known state, etc.
- Week 15: Philosophical foundations and ethics

It's all about building agents

Sense, decide, act

Maximize expected utility

Topics not covered

Constraint satisfaction

(Chapter 6)

Knowledge representation and reasoning

(Chapters 7-9, 11, 12)

Game theory and auctions

(Sections 17.5, 17.6)

Aspects of learning

(Chapters 18, 19)

Natural language

(Chapters 22, 23)

Vision

(Chapter 24)

Robotics

(Chapter 25)