CS343
Artificial Intelligence

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Late readings accepted until the night before the exam (5/11)
- Final: Wednesday May 12th, 2-5pm
Tournament Qualifiers

- dtkraftAgents (David)
- NormChomsky (Lon)
- DbAgents (Diego)
- AdamNick (Adam and Nick)
- SpecialAgents (Jackie and Dustin)
- TheAvengingBlowfish (Bethany)
Round Robin

1. AdamNick: 7 matches won (qualified)

2. SpecialAgents: 6 matches won (qualified)

3. DbAgents: 6 matches won (qualified)

4. dtkraftAgent: 5 matches won (qualified)

5. TheAvengingBlowfish: 2 matches won

6. NormChompsky: 1 matches won
Semifinals

- AdamNick vs. dtkraftAgent
Semifinals

- AdamNick vs. dtkraftAgent (7-2)
Semifinals

- AdamNick vs. dtkraftAgent (7-2)
- SpecialAgents vs. DbAgents
Semifinals

- AdamNick vs. dtkraftAgent (7-2)
- SpecialAgents vs. DbAgents (0-9)
Semifinals

- AdamNick vs. dtkraftAgent (7-2)
- SpecialAgents vs. DbAgents (0-9)

3rd place game: dtkraftAgent vs. SpecialAgents
Semifinals

- AdamNick vs. dtkraftAgent (7-2)
- SpecialAgents vs. DbAgents (0-9)

3rd place game: dtkraftAgent vs. SpecialAgents (7-2)
Semifinals

- AdamNick vs. dtkraftAgent (7-2)
- SpecialAgents vs. DbAgents (0-9)

3rd place game: dtkraftAgent vs. SpecialAgents (7-2)

Final: AdamNick vs. DbAgents
Semifinals

- AdamNick vs. dtkraftAgent (7-2)
- SpecialAgents vs. DbAgents (0-9)

3rd place game: dtkraftAgent vs. SpecialAgents (7-2)

Final: AdamNick vs. DbAgents (8-1)
Final Rankings

1. AdamNick (5% bonus)
2. DbAgents (4% bonus)
3. dtkraftAgent (3% bonus)
4. SpecialAgents (1% bonus)
5. TheAvengingBlowfish (1% bonus)
6. NormChompsky (1% bonus)

Congratulations to all!

Peter Stone
Pending Questions

• Is *qualia* important? (subjective experience)
Pending Questions

• Is *qualia* important? (subjective experience)

• What’s so important about agents being in the physical world?
Pending Questions

- Is *qualia* important? (subjective experience)
- What’s so important about agents being in the physical world?
- Is the brain a machine?
 - Is the brain just a bunch of neurons? Can they be replaced?
 - What is the mind? (Is there a soul?)
Pending Questions

• Is *qualia* important? (subjective experience)

• What’s so important about agents being in the physical world?

• Is the brain a machine?
 – Is the brain just a bunch of neurons? Can they be replaced?
 – What is the mind? (Is there a soul?)

• What do I think about ethical side?
 • Who’s liable for a crash?
 • Would declaring AI unethical stop progress?
Pending Questions

- Is *qualia* important? (subjective experience)

- What’s so important about agents being in the physical world?

- Is the brain a machine?
 - Is the brain just a bunch of neurons? Can they be replaced?
 - What is the mind? (Is there a soul?)

- What do I think about ethical side?
 - Who’s liable for a crash?
 - Would declaring AI unethical stop progress?

- What am I looking forward to?
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs —
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

• **Next:** MDPs — towards reinforcement learning
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
- **Next**: MDPs — towards reinforcement learning
 - Still know transition and reward function
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - Know current state

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state
Course Recap

• **First weeks:** search (BFS, A*, minimax, alpha-beta)
 – Find an optimal plan (or solution)
 – Best thing to do from the current state
 – Know transition and cost (reward) functions
 – Either execute complete solution (deterministic) or search again at every step
 – **Know current state**

• **Next:** MDPs — towards reinforcement learning
 – Still know transition and reward function
 – Looking for a **policy** — optimal action from every state

• **Before Midterm:** Reinforcement learning
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state
- **Before Midterm:** Reinforcement learning
 - Policy without knowing transition or reward functions
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

- **Before Midterm:** Reinforcement learning
 - Policy without knowing transition or reward functions
 - **Still know state**
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
Course Recap (cont.)

• **Probabilistic Reasoning:** Now state is unknown

• Bayesian networks – state estimation/inference

• **Prior, net structure, and CPT’s known**
 – **Week 5:** Probability and utilities
 – **Week 9:** Conditional independence and inference (exact and approximate)
 – **Week 10:** Exact state estimation over time
 – **Week 11:** Approximate state estimation over time
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time

- **Week 12:** What if they’re not known?
Course Recap (cont.)

- **Probabilistic Reasoning**: Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5**: Probability and utilities
 - **Week 9**: Conditional independence and inference (exact and approximate)
 - **Week 10**: Exact state estimation over time
 - **Week 11**: Approximate state estimation over time
- **Week 12**: What if they’re not known?
 - Also Bayesian networks for **classification**
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time

- **Week 12:** What if they’re not known?
 - Also Bayesian networks for **classification**
 - A type of **machine learning**
Course Recap (cont.)

- **Week 13**: Machine Learning
 - Just a taste – focus on concept learning = classification
Course Recap (cont.)

- **Week 13: Machine Learning**
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
Course Recap (cont.)

- **Week 13**: Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14**: Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.

- **Week 15:** Philosophical foundations and ethics
Course Recap (cont.)

• **Week 13**: Machine Learning
 – Just a taste – focus on concept learning = classification
 – Perceptrons, SVMs, MIRA
 – Didn’t cover unsupervised learning

• **Week 14**: Classical planning
 – Reasoning with first order representations
 – So far we had dealt only with propositions
 – Back to known transitions, known state, etc.

• **Week 15**: Philosophical foundations and ethics

 It’s all about building agents

 Sense, decide, act

Peter Stone
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.

- **Week 15:** Philosophical foundations and ethics

 It’s all about building agents
 Sense, decide, act
 Maximize expected utility
Topics not covered

- Constraint satisfaction (Chapter 6)
- Knowledge representation and reasoning (Chapters 7-9, 11, 12)
- Game theory and auctions (Sections 17.5, 17.6)
- Aspects of learning (Chapters 18, 19)
- Natural language (Chapters 22, 23)
- Vision (Chapter 24)
- Robotics (Chapter 25)
Final Exam

- Wednesday May 12th, 2-5pm
Final Exam

• Wednesday May 12th, 2-5pm
• I will be out of town - Daniel will proctor
Final Exam

- Wednesday May 12th, 2-5pm
- I will be out of town - Daniel will proctor
 - Leaving on Sunday, but in email contact
 - Available by appointment tomorrow (Friday)
Final Exam

- Wednesday May 12th, 2-5pm

- I will be out of town - Daniel will proctor
 - Leaving on Sunday, but in email contact
 - Available by appointment tomorrow (Friday)

- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
Final Exam

- Wednesday May 12th, 2-5pm
- I will be out of town - Daniel will proctor
 - Leaving on Sunday, but in email contact
 - Available by appointment tomorrow (Friday)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
Final Exam

- Wednesday May 12th, 2-5pm

- I will be out of town - Daniel will proctor
 - Leaving on Sunday, but in email contact
 - Available by appointment tomorrow (Friday)

- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning

- Striving for similar difficulty to midterm

- 3 hours rather than 1 hour and 15 minutes
Final Exam

- Wednesday May 12th, 2-5pm
- I will be out of town - Daniel will proctor
 - Leaving on Sunday, but in email contact
 - Available by appointment tomorrow (Friday)
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1 hour and 15 minutes
- Sample - Dan Klein’s Spring 2009 exam with solutions
My Perspective

- I’ve enjoyed teaching this class!
My Perspective

• I’ve enjoyed teaching this class!
• Wasn’t sure at first if I could cover all this material
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Daniel for handling all the programming assignments!
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Daniel for handling all the programming assignments!
- I’m proud of all of you for sticking with it through what I think was a demanding course
My Perspective

- I've enjoyed teaching this class!
- Wasn't sure at first if I could cover all this material
- I've been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Daniel for handling all the programming assignments!
- I'm proud of all of you for sticking with it through what I think was a demanding course

THANKS!!!
Surveys

- Daniel’s and my surveys
- Positive and negative feedback useful
Surveys

- Daniel’s and my surveys
- Positive and negative feedback useful
- Invitation to send more feedback by email
Surveys

- Daniel’s and my surveys

- Positive and negative feedback useful

- Invitation to send more feedback by email
 - If/when I teach the course again, how should it change?
Surveys

- Daniel’s and my surveys

- Positive and negative feedback useful

- Invitation to send more feedback by email
 - If/when I teach the course again, how should it change?

- Most important: course rating, instructor rating, written comments