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Logistics

e Exercise responses not all checked
e Next week’'s readings: adversarial search

e Kautz talk on Friday
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Pending Questions

e Can you turn continuous domains into discrete?

e Computing gradient locally not globally?
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Continuous Local Search to learn
walk

fast

Goal: Enable an Aibo to walk as fast as possible

e Start with a parameterized walk

e Learn fasftest possible parameters

e No simulator available:

— Learn entirely on robofts
— Minimal human intervention
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Walking Aibos

e \Walks that "come with” Aibo are slow

e RoboCup soccer: 25+ Aibo teams internationally

— Motivates faster walks
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Walking Aibos

e \Walks that "come with” Aibo are slow

e RoboCup soccer: 25+ Aibo teams internationally

— Motivates faster walks

Hand-tuned gaits (2003) Learned gaits
German UT Austin Hornby et al.  Kim & Uther
Team Villa UNSW (1999) (2003)
230 mm/s 245 254 170 270 (+5)
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A Parameterized Walk

e Developed from scratch as part of UT Austin Villa 2003

e Trot gait with elliptical locus on each leg
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Locus Parameters

e Ellipse length

e Ellipse height

e Posifion on x axis
e Position on y axis
e Body height

e [IMing values

12 continuous parameters
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Locus Parameters

e Ellipse length

e Ellipse height

e Posifion on x axis
e Position on y axis
e Body height

e [IMing values

12 continuous parameters

e Hand tuning by April, ‘03: 140 mm/s
e Hand ftuning by July, '03: 245 mm/s
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Parameters To Learn

Parameter Initial
Value
Front ellipse:
(height) 4.2
(x offset) 2.8
(y offset) 4.9
Rear ellipse:
(height) 0.6
(x offset) 0.0
(y offset) -2.8
Ellipse length 4.893
Ellipse skew multiplier | 0.035
Front height 7.7
Rear height 11.2
Time to move
through locus 0.704
Time on ground 0.5
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Experimental Setup

e Policy m ={604,...,012}, V() = walk speed when using =
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Experimental Setup

e Policy m ={604,...,012}, V() = walk speed when using =

e Training Scenario

— Robofts time themselves traversing fixed distance

— Multiple traversals (3) per policy to account for noise
— Multiple robots evaluate policies simultaneously

— Off-board computer collects results, assigns policies

No human intervention except battery changes
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Policy Gradient RL

e From 7 want fo move in direction of gradient of V()
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Policy Gradient RL

e From 7 want fo move in direction of gradient of V()

— Can't compute 271 directly: estimate empirically
e Evaluate neighboring policies o estimate gradient

e Each frial randomly varies every parameter
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Gradient Estimation
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Taking a step
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Taking a step

15—
14—
13+
12+

T T =
191—15] lgl-l—U 914—61

O if Avgyo; > Avgyc; ONA
A; = Avgio,; > Avg_c
Avgie; — Avg_.; Otherwise

e Normalize A, mulfiply by scalar step-size n

e T=m+nA

(M
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Experiments

e Started from stable, but fairly slow gait
e Used 3 robots simultaneously

e Each iteration takes 45 fraversals, 71 minutes
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Experiments

e Started from stable, buft fairly slow gait
e Used 3 robots simultaneously

e Each iteration takes 45 fraversals, 71 minutes

Before learning After learning

e 24 iterations = 1080 field traversals, ~ 3 hours
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Results
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Results
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e Additional iterations didn’t help
e Spikes: evaluation noise? large step size”?
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Learned Parameters

Parameter Initial € Best
Value Value
Front ellipse:
(height) 4.2 0.35 | 4.081
(x offset) 2.8 0.35 | 0.574
(y offset) 4.9 0.35 | 5.152
Rear ellipse:
(height) 9.6 0.35 6.02
(x offset) 0.0 0.35 | 0.217
(y offset) -2.8 0.35 | -2.982
Ellipse length 4893 | 0.35 | 5285
Ellipse skew multiplier | 0.035 | 0.175 | 0.049
Front height 7.7 0.35 | 7.483
Rear height 11.2 | 0.35 | 10.843
Time to move
through locus 0.704 | 0.016 | 0.679
Time on ground 0.5 0.05 | 0.430
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Algorithmic Comparison, Robot Port

Velocily of Learned Gait during Training
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Summary

e Used policy gradient RL to learn fastest Aibo walk
e All learning done on real robots

e No human itervention (except battery changes)
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Grasping the Bali

e Three stages: walk o ball; slow down; lower chin
e Head proprioception, IR chest sensor — ball distance

e Movement specified by 4 parameters
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Grasping the Bali

e Three stages: walk o ball; slow down; lower chin
e Head proprioception, IR chest sensor — ball distance

e Movement specified by 4 parameters

Brittle!
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Parameterization

e slowdown_dist: when to slow down

e slowdown_factor: how much 1o slow down

e capture_angle: when to stop furning

e capture_dist: when to puft down head
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Learning the Chin Pinch

e Binary, noisy reinforcement signal: multiple trials

e ROboOT evaluates self: no human intervention
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Results

e Evaluation of policy gradient, hill climbing, amoeba

100

successful captures out of 100 trials
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What it learned

Policy slowdown | slowdown | capture | capture || Success
dist factor angle dist rate
Initial 200mm 0.7 15.0° 110mm 36%
Policy gradient 125mm 1 17.4° 152mm 64%
Amoeba 208mm ] 33.4° 162mm 69%
Hill climbing 240mm 1 35.0° 170mm 66%
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Instance of Layered Learning

e For domains too complex for tractably mapping state
features S —— outputs O

e Hierarchical subtask decomposition given: {Lq, Lo, ..., L,}
e Machine learning: exploit data o train, adapt

e Learning in one layer feeds into next layer

High Levyel Goals

(Adversarial Behaviors

(Team Behaviors

= i\) Machine Learning
" Opportunities

(Multi-Agent Behaviors

(Individual Behaviors "’

( World State

LTI

Environment
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Relaxing the Assumptions

e Nondeterministic actions:
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Relaxing the Assumptions

e Nondeterministic actions: AND-OR search
e Partial observations: Belief states
e Unknown environments: Online search

e Adversaries: Next week....

Peter Stone
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