Approximate Inference

Simulation has a name: sampling G
Sampling is a hot topic in machine learning,
and it's really simple 9
Basic idea:

= Draw N samples from a sampling distribution S

= Compute an approximate posterior probability a

= Show this converges to the true probability P

Why sample?
= |earning: get samples from a distribution you don’t know

* |nference: getting a sample is faster than computing the right
answer (e.g. with variable elimination) 1
This slide deck courtesy of Dan Klein at UC Berkeley
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Prior Sampling

= This process generates samples with probability:
Sps(z1...zn) = || P(x;|Parents(X;)) = P(z1...zn)

1=1
...1.e. the BN’s joint probability

= et the number of samples of an event be Nps(z1...zn)

= Then lim P(:Cl,...,icn) lim Nps(xl,...,:cn)/N

N —00 N —00
= P(x1...21n)

= |.e., the sampling procedure is consistent 3



Example

= First: Get a bunch of samples from the BN:

+C, -S, +I, +W
+C, +S, +I, +W
-C, +S, +I, -W
+C, -S, +I, +W
-C, -S, -I, +W

= Example: we want to know P(W)

We have counts <+w:4, -w:1>

Normalize to get approximate P(W) = <+w:0.8, -w:0.2>

This will get closer to the true distribution with more samples
Can estimate anything else, too

What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?

Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling

= Let’'s say we want P(C)
* No point keeping all samples around
= Just tally counts of C as we go

= | et’'s say we want P(C| +s)

+C, -S, +I, +W

= Same thing: tally C outcomes, but +C, +S, +1, +W
ignore (reject) samples which don't "C, +5, 41, -W
have S=+S +C, -S, +I, +W

o _ . _ -C, -S, -I, +W
* This is called rejection sampling

= |t is also consistent for conditional
probabilities (i.e., correct in the limit)



Sampling Example

= There are 2 cups.
= The first contains 1 penny and 1 quarter
* The second contains 2 quarters

= Say | pick a cup uniformly at random, then pick a
coin randomly from that cup. It's a quarter (yes!).
What is the probability that the other coin in that
cup is also a quarter?



Likelihood Welighting

Problem with rejection sampling:
= |f evidence is unlikely, you reject a lot of samples

* You don’t exploit your evidence as you sample b, -a
= Consider P(Bl+a) b, -a
-b, -a
+b, +a
Idea: fix evidence variables and sample the rest b 43

-b, +a
Burglary b, +a
-b, +a

+b, +a
Problem: sample distribution not consistent!

Solution: weight by probability of evidence given parents 7



Likelihood Welighting
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Likelihood Welighting

= Sampling distribution if z sampled and e fixed evidence

[

Sws(z,e) = || P(z;|Parents(Z;))
i=1

= Now, samples have weights
m

w(z,e) = || P(e;|Parents(E;))
i=1

= Together, weighted sampling distribution is consistent
[ m
Sws(z,€) - w(z,e) = | | P(zi|Parents(z;)) | [ P(e;|Parents(e;))
=1 1=1

= P(z,e) o



Likelihood Welighting

= Likelihood weighting is good
* We have taken evidence into account as
we generate the sample

= E.g. here, W’s value will get picked
based on the evidence values of S, R

* More of our samples will reflect the state
of the world suggested by the evidence
= Likelihood weighting doesn’t solve
all our problems

= Evidence influences the choice of
downstream variables, but not upstream
ones (C isn’t more likely to get a value
matching the evidence)

= We would like to consider evidence
when we sample every variable

10



Markov Chain Monte Carlo”*

Idea: instead of sampling from scratch, create samples that are
each like the last one.

Procedure: resample one variable at a time, conditioned on all the
rest, but keep evidence fixed. E.g., for P(B|+c):

() (D) (DL

Properties: Now samples are not independent (in fact they’'re nearly
identical), but sample averages are still consistent estimators!

What's the point. both upstream and downstream variables
condition on evidence.

11






Reasoning over Time

" Often, we want to reason about a sequence of
observations

" Speech recognition
" Robot localization
" User attention

" Medical monitoring

" Need to introduce time into our models
" Basic approach: hidden Markov models (HMMs)
" More general: dynamic Bayes’ nets

13
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Markov Models

" A Markov model is a chain-structured BN
" Each node is identically distributed (stationarity)

" Value of X at a given time is called the state
" As a BN:

=00~

P(X1) P(X|X_1)

" Parameters: called transition probabilities or
dynamics, specify how the state evolves over time
(also, initial probs)



Conditional Independence

(-~ @— (-~

" Basic conditional independence:
" Past and future independent of the present
" Each time step only depends on the previous
" This is called the (first order) Markov property

" Note that the chain is just a (growing) BN

" We can always use generic BN reasoning on it if we
truncate the chain at a fixed length
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Example: Markov Chain

= Weather: 0!

» States: X = {rain, sun}

" Transitions: ‘@ .

0.9
This is a
CPT, not a
0.1 BN!
" |nitial distribution: 1.0 sun

" What'’s the probability distribution after one step?
P(Xp, =sun) = +
P(X» = sun|X7 = rain)P(X1 = rain)

+0.1-0.0=0.9
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Mini-Forward Algorithm

" Question: probability of being in state x at time t?

" Slow answer:
" Enumerate all sequences of length t which end in s
" Add up their probabilities

P(Xy=sun)= » P(z1,...7_1,sun)

P(Xq = sun)P(Xo = sun|Xq = sun)P(X3 = sun|Xo = sun)P(X4 = sun|X3 = sun)

P(Xq = sun)P(Xo = rain| X1 = sun)P (X3 = sun|Xp, = rain) P(X4 = sun|X3 = sun)
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Mini-Forward Algorithm

" Question: What's P(X) on some day t?

sun sun sun sun

rain rain rain rain

P(zy) = Y P(zlag—1)P(zi—1)

Lt—1

P(x1) = known \

Forward simulazl‘/g)n



Example

" From initial observation of sun

(00) (01) (ois) == (G3)

P(X)) P(X5) P(X5) P(X,)

" From initial observation of rain

(1) (05) (os2) = (53]

P(X)) P(X5) P(X5) P(X,)
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Stationary Distributions

" |f we simulate the chain long enough:

" What happens?
" Uncertainty accumulates
" Eventually, we have no idea what the state is!

= Stationary distributions:

" For most chains, the distribution we end up in is
iIndependent of the initial distribution

" Called the stationary distribution of the chain
" Usually, can only predict a short time out



Web Link Analysis

" PageRank over a web graph
" Each web page is a state LT

" [nitial distribution: uniform over pages
" Transitions:
= With prob. c, uniform jump to a
random page (dotted lines, not all shown) QO .
= With prob. 1-c, follow a random  )e---
outlink (solid lines)

= Stationary distribution
" Will spend more time on highly reachable pages
" E.g. many ways to get to the Acrobat Reader download page
" Somewhat robust to link spam

" Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting

less important over time) 21



Hidden Markov Models

" Markov chains not so useful for most agents
" Eventually you don’t know anything anymore
" Need observations to update your beliefs

" Hidden Markov models (HMMSs)

" Underlying Markov chain over states S
" You observe outputs (effects) at each time step
" As a Bayes' net:

D DDr@r--»




Example

P(R;)
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" An HMM is defined by:
" |nitial distribution: P(X7)

" Transitions:
" Emissions:

P(X[X_1)
P(E|X)

Umbrella)




Ghostbusters HMM

P(X,) = uniform

P(X|X") = usually move clockwise, but
sometimes move in a random direction or
stay in place

P(R;|X) = same sensor model as before:
red means close, green means far away.

()X -~

1/911/9(1/9
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Conditional Independence

" HMMs have two important independence properties:
" Markov hidden process, future depends on past via the present
" Current observation independent of all else given current state

() () - -

" Quiz: does this mean that observations are
independent?

" [No, correlated by the hidden state]



Real HMM Examples

" Speech recognition HMMs:
" QObservations are acoustic signals (continuous valued)

" States are specific positions in specific words (so, tens of
thousands)

" Machine translation HMMs:
" Observations are words (tens of thousands)
" States are translation options

" Robot tracking:
" QObservations are range readings (continuous)
" States are positions on a map (continuous)



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the
distribution B(X) (the belief state) over time

We start with B(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
Implemented as a method of trajectory estimation for the
Apollo program
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