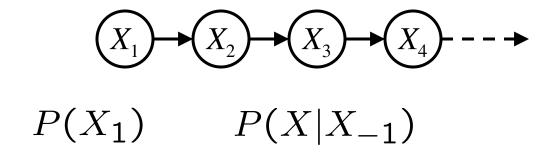
Reasoning over Time

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time into our models
- Basic approach: hidden Markov models (HMMs)
- More general: dynamic Bayes' nets

Markov Models

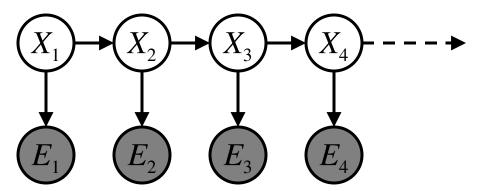
- A Markov model is a chain-structured BN
 - Each node is identically distributed (stationarity)
 - Value of X at a given time is called the state
 - As a BN:



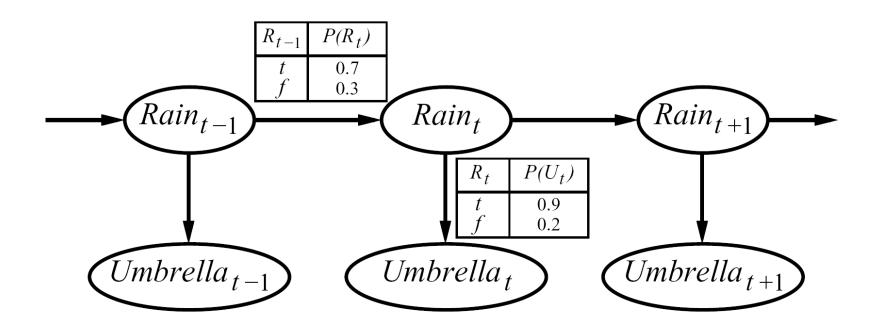
 Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial probs)

Hidden Markov Models

- Markov chains not so useful for most agents
 - Eventually you don't know anything anymore
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states S
 - You observe outputs (effects) at each time step
 - As a Bayes' net:



Example



An HMM is defined by:

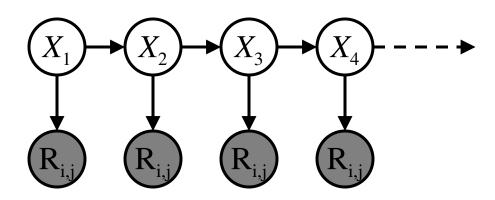
• Initial distribution: $P(X_1)$

• Transitions: $P(X|X_{-1})$

• Emissions: P(E|X)

Ghostbusters HMM

- $P(X_1) = uniform$
- P(X|X') = usually move clockwise, but sometimes move in a random direction or stay in place
- $P(R_{ij}|X)$ = same sensor model as before: red means close, green means far away.



1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

$$P(X_1)$$

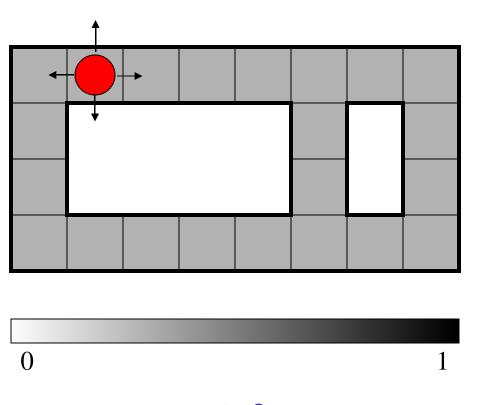
1/6	1/6	1/2
0	1/6	0
0	0	0

$$P(X|X'=<1,2>)$$

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state) over time
- We start with B(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

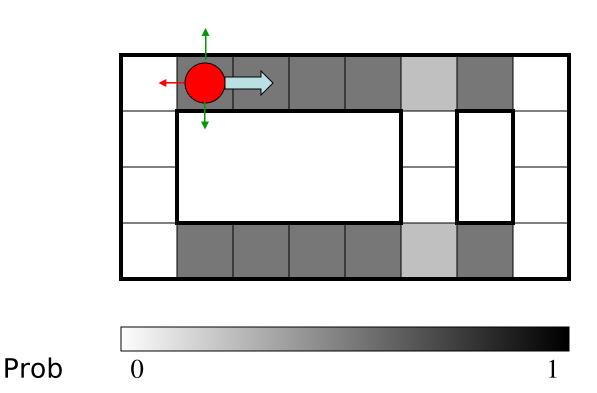
Example from Michael Pfeiffer

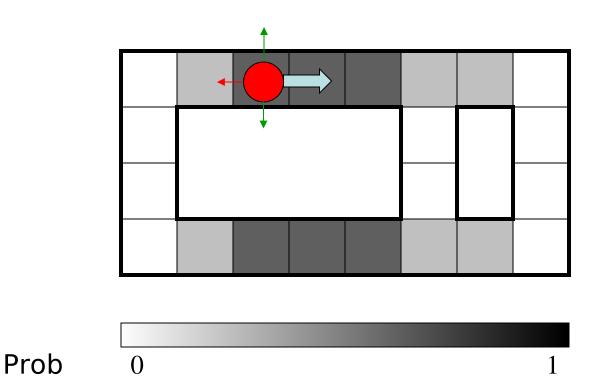


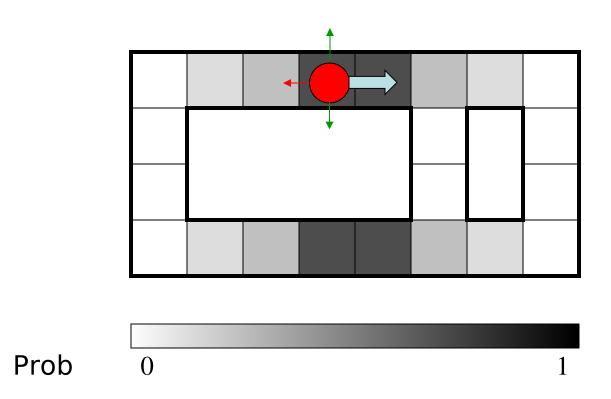
t=0

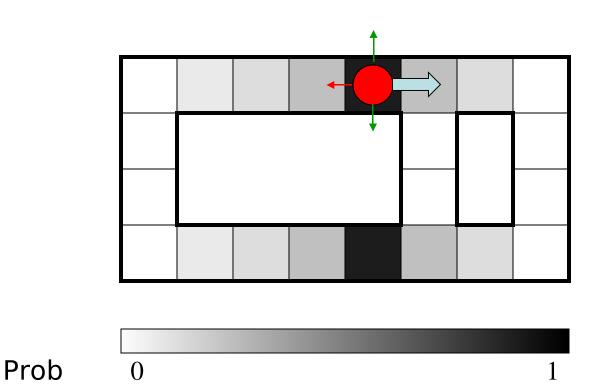
Prob

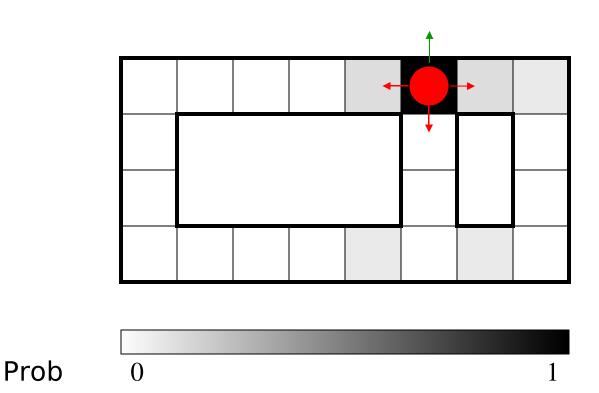
Sensor model: never more than 1 mistake Motion model: may not execute action with small prob.



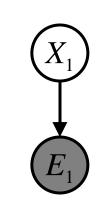








Inference Recap: Simple Cases

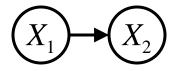


$$P(X_1|e_1)$$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

$$= P(x_1)P(e_1|x_1)$$



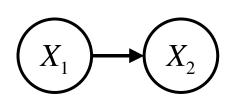
$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$



Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

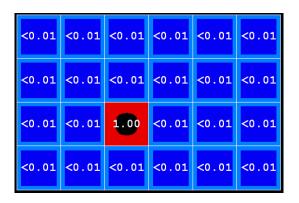
Or, compactly:

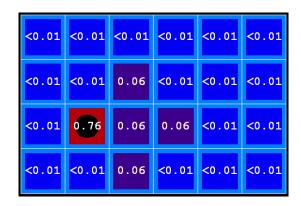
$$B'(X_{t+1}) = \sum_{x_t} P(X'|x)B(x_t)$$

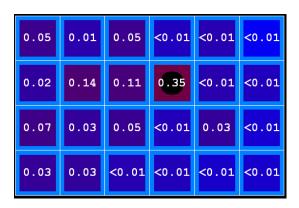
- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"







$$T = 1$$

$$T = 2$$

$$T = 5$$

$$B'(X') = \sum_{x} P(X'|x)B(x)$$

Transition model: ghosts usually go clockwise

Observation

Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

Then:

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

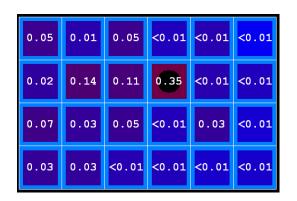
Or:

$$B(X_{t+1}) \propto P(e|X)B'(X_{t+1})$$

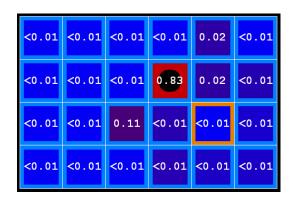
- Basic idea: beliefs reweighted by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

 As we get observations, beliefs get reweighted, uncertainty "decreases"



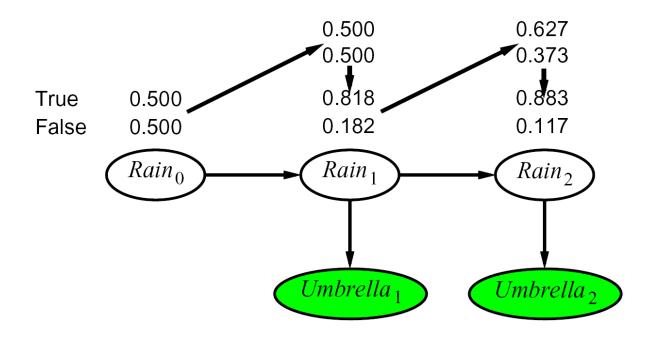
Before observation



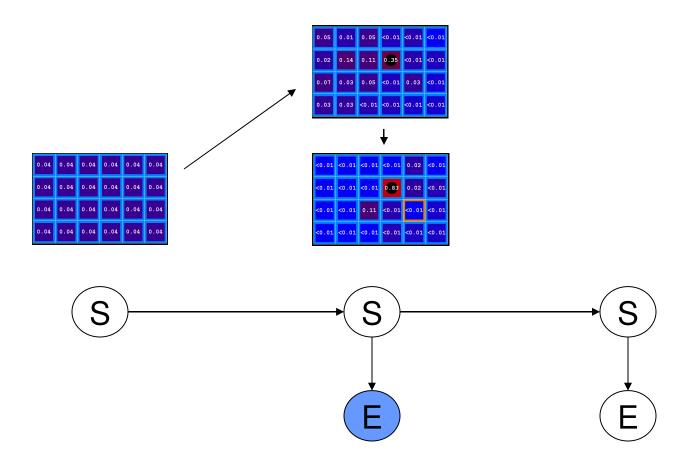
After observation

$$B(X) \propto P(e|X)B'(X)$$

Example HMM



Example HMM



The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

We can derive the following updates

 $P(x_t|e_{1:t}) \propto_X P(x_t,e_{1:t})$ step, or just on at the end... $= \sum_{x_{t-1}} P(x_{t-1},x_t,e_{1:t})$ $= \sum_{x_{t-1}} P(x_{t-1},e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)$ $= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1},e_{1:t-1})$

We can normalize
as we go if we
want to have P(x|
e) at each time
step, or just once

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

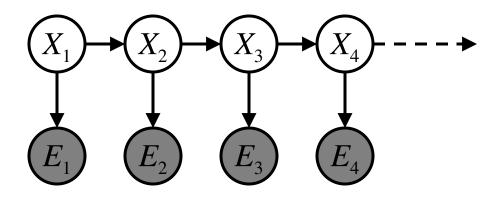
$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

- The forward algorithm does both at once (and doesn't normalize)
- Problem: space is |X| and time is |X|² per time step

Best Explanation Queries

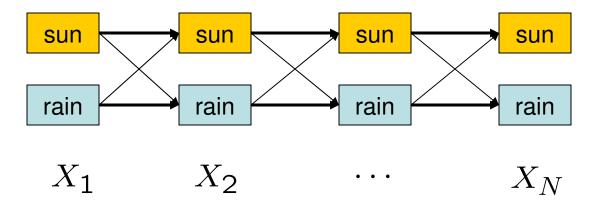


• Query: most likely seq:

$$\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$$

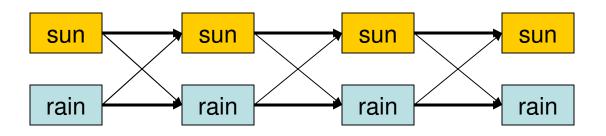
State Path Trellis

State trellis: graph of states and transitions over time



- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is the seq's probability
- Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph

Viterbi Algorithm



$$x_{1:T}^* = \underset{x_{1:T}}{\operatorname{arg\,max}} P(x_{1:T}|e_{1:T}) = \underset{x_{1:T}}{\operatorname{arg\,max}} P(x_{1:T}, e_{1:T})$$

$$m_t[x_t] = \underset{x_{1:t-1}}{\operatorname{max}} P(x_{1:t-1}, x_t, e_{1:t})$$

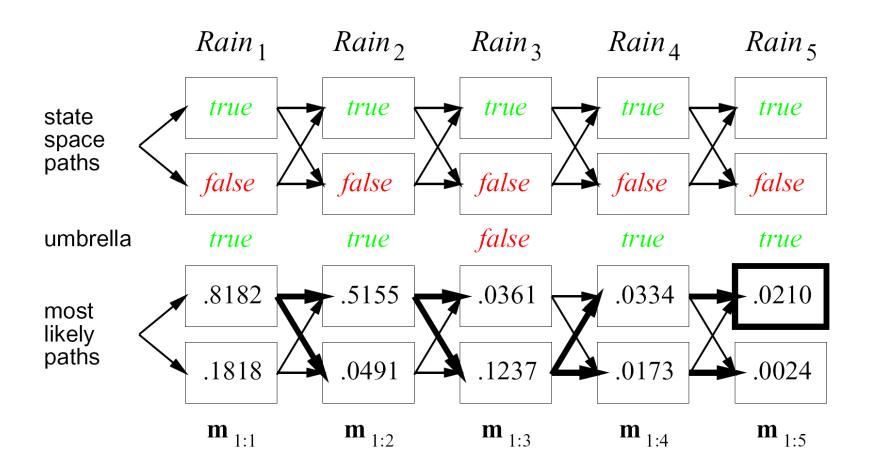
$$= \underset{x_{1:t-1}}{\operatorname{max}} P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)$$

$$= P(e_t|x_t) \underset{x_{t-1}}{\operatorname{max}} P(x_t|x_{t-1}) \underset{x_{1:t-2}}{\operatorname{max}} P(x_{1:t-1}, e_{1:t-1})$$

 $= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$

24

Example



Filtering

- Filtering is the inference process of finding a distribution over X_T given e₁ through e_T: P(X_T | e_{1:t})
- We first compute P($X_1 \mid e_1$): $P(x_1 \mid e_1) \propto P(x_1) \cdot P(e_1 \mid x_1)$
- For each t from 2 to T, we have P(X_{t-1} | e_{1:t-1})
- Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

■ Observe: compute $P(X_t | e_{1:t-1}, e_t) = P(X_t | e_{1:t})$ $P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)$

Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(e_t|x_t)P(x_t|e_{1:t-1})$$

- The forward algorithm does both at once (and doesn't normalize)
- Problem: space is |X| and time is |X|² per time step

Filtering

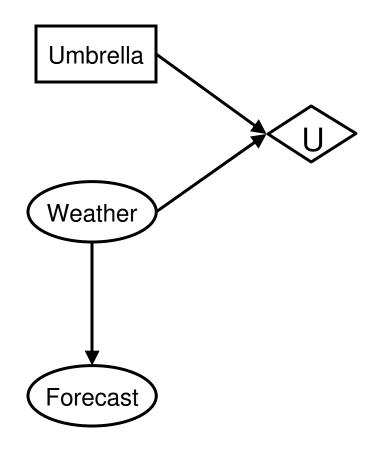
- Filtering is the inference process of finding a distribution over X_T given e₁ through e_T: P(X_T | e_{1:t})
- We first compute P($X_1 \mid e_1$): $P(x_1 \mid e_1) \propto P(x_1) \cdot P(e_1 \mid x_1)$
- For each t from 2 to T, we have P(X_{t-1} | e_{1:t-1})
- Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• Observe: compute $P(X_t | e_{1:t-1}, e_t) = P(X_t | e_{1:t})$ $P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)$

Decision Networks

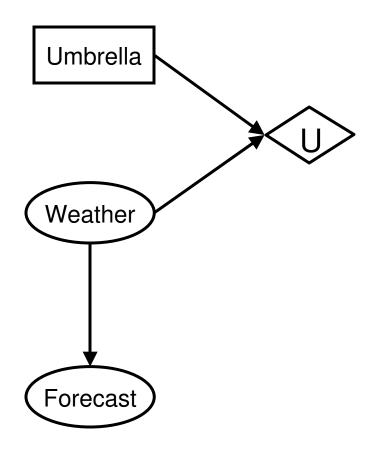
- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)



Decision Networks

Action selection:

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action



Example: Decision Networks

Umbrella = leave

$$EU(leave) = \sum_{w} P(w)U(leave, w)$$

$$= 0.7 \cdot 100 + 0.3 \cdot 0 = 70$$

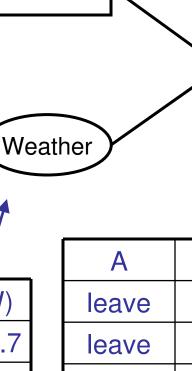
Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$

$$= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$$

W	P(W)	
sun	0.7	
rain	0.3	

W	P(W)
sun	0.7
rain	0.3



take

take

U(A,W)

100

20

W

sun

rain

sun

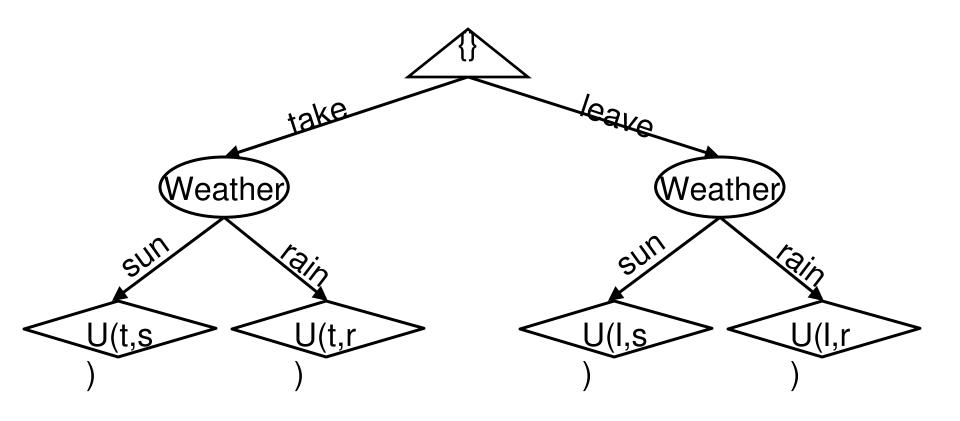
rain

Umbrella

Optimal	decision =	= leave
----------------	------------	---------

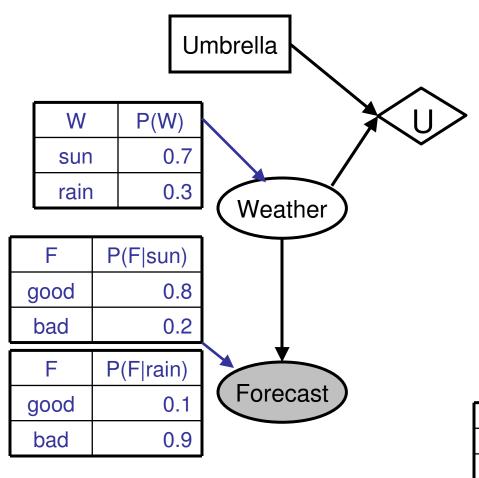
$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

Decisions as Outcome Trees



- Almost exactly like expectimax / MDPs
- What's changed?

Evidence in Decision Networks



- Find P(W|F=bad)
 - Select for evidence

W	P(W)
sun	0.7
rain	0.3

P(W)

W	P(F=bad W)	
sun	0.2	
rain	0.9	

P(bad|W)

- First we join P(W) and P(bad|W)
- Then we normalize

W	P(W,F=bad)	
sun	0.14	
rain	0.27	

W	P(W F=bad)
sun	0.34
rain	0.66

$$P(W|F = \text{bad})$$

Example: Decision Networks

$$EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w)$$

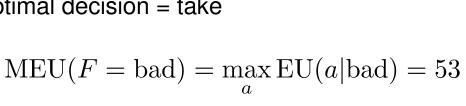
$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

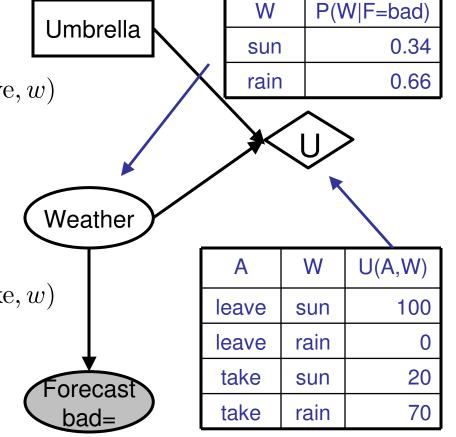
Umbrella = take

$$EU(take|bad) = \sum_{w} P(w|bad)U(take, w)$$

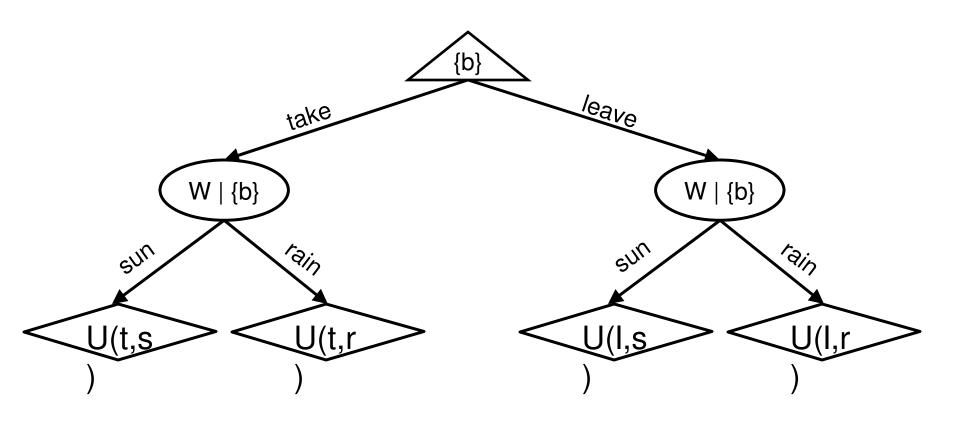
$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

Optimal decision = take



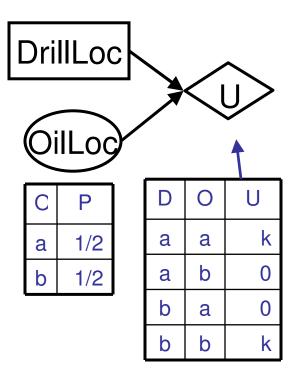


Decisions as Outcome Trees



Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2



Value of Information

Assume we have evidence E=e. Value if we act now:

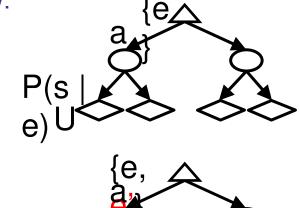
$$MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$$

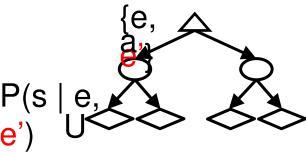
Assume we see that E' = e'. Value if we act then:

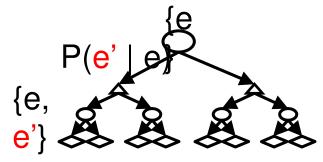
$$MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act: $\mathsf{MEU}(e,E') = \sum_{e'} P(e'|e) \mathsf{MEU}(e,e')$
- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$







VPI Example: Weather

MEU with no evidence

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

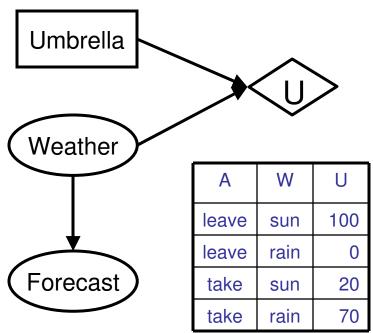
MEU if forecast is good

$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

Forecast distribution

ш	P(F)		$0.59 \cdot (95) + 0.41 \cdot (53) - 70$
good	0.59		$0.59 \cdot (95) + 0.41 \cdot (55) - 70$
bad	0.41	ľ	77.8 - 70 = 7.8

$$VPI(E|e') = \left(\sum_{e'} P(e'|e)MEU(e,e')\right) - MEU(e)$$



VPI Properties

Nonnegative

$$\forall E', e : \mathsf{VPI}(E'|e) \geq 0$$

Nonadditive – consider, e.g., obtaining E twice

$$VPI(E_j, E_k|e) \neq VPI(E_j|e) + VPI(E_k|e)$$

Order-independent

$$VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$$
$$= VPI(E_k|e) + VPI(E_j|e, E_k)$$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

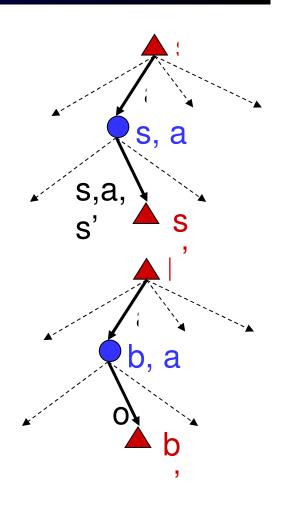
POMDPs

MDPs have:

- States S
- Actions A
- Transition fn P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s')

POMDPs add:

- Observations O
- Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)



We'll be able to say more in a few lectures

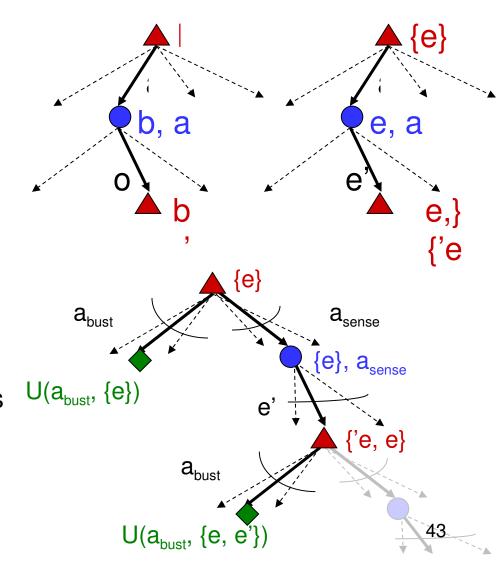
Example: Ghostbusters

in (static) Ghostbusters.

- Belief state determined by evidence to date {e}
- Tree really over evidence sets
- Probabilistic reasoning needed to predict new evidence given past evidence

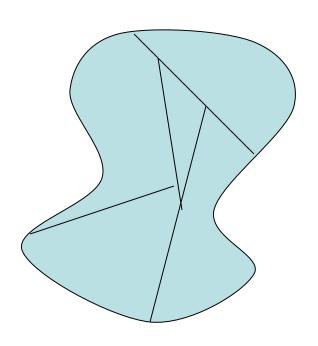
Solving POMDPs

- One way: use truncated expectimax to compute approximate value of actions
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!



More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSACE-) hard
- Most real problems are POMDPs, but we can rarely solve then in general!



VPI Example: Ghostbusters

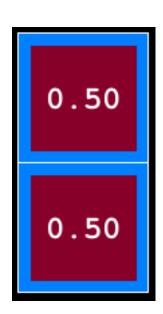
- Reminder: ghost is hidden, sensors are noisy
- T: Top square is red

B: Bottom square is red G: Ghost is in the top

Sensor model:

$$P(+t | +g) = 0.8$$

 $P(+t | \neg g) = 0.4$
 $P(+b | +g) = 0.4$
 $P(+b | \neg g) = 0.8$



Joint Distribution

Т	В	G	P(T,B,
+t	+b	+ g	0.16
+t	+b	о	0.16
+t		+ 9	0.24
+t	_ d	g	0.04
−t	+ b	+g	0.04
_t	+ b	-g	0.24
−t	_p	+g	0.06
_t	¬b	_ □	0.06

[Demo]

VPI Example: Ghostbusters

Utility of bust is 2, no bust is 0

- Q1: What's the value of knowing T if I know nothing?
- Q1': E_{P(T)}[MEU(t) MEU()]
- Q2: What's the value of knowing B if I already know that T is true (red)?
- Q2': E_{P(B|t)}[MEU(t,b) MEU(t)]
- How low can the value of information ever be?

Joint Distribution

T	В	G	P(T,B,
+t	+b	+g	0.16
+t	+b	o	0.16
+t	<u> </u>	+ g	0.24
+t	_ □	-g	0.04
-t	+b	+g	0.04
⊸t	+b	-g	0.24
⊸t	−b	+g	0.06
−t	¬b	¬g	0.06

[Demo]

Conditioning on Action Nodes

- An action node can be a parent of a chance node
- Chance node conditions on the outcome of the action
- Action nodes are like observed variables in a Bayes' net, except we max over their values

