Machine Learning Up until now: how to reason in a model and how to make optimal decisions - Machine learning: how to acquire a model on the basis of data / experience - Learning parameters (e.g. probabilities) - Learning structure (e.g. BN graphs) - Learning hidden concepts (e.g. clustering) ### Example: Spam Filter Input: email Output: spam/ham Setup: Get a large collection of example emails, each labeled "spam" or "ham" Note: someone has to hand label all this data! Want to learn to predict labels of new, future emails Features: The attributes used to make the ham / spam decision Words: FREE! Text Patterns: \$dd, CAPS Non-text: SenderInContacts • ... Dear Sir. First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ... TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT. 99 MILLION EMAIL ADDRESSES FOR ONLY \$99 Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened. # Example: Digit Recognition | | Input: images / pixel grids | 2 | 0 | |---|---|-----|----| | | Output: a digit 0-9 | | Ü | | | Setup: | - 1 | | | | Get a large collection of example
images, each labeled with a digit | (| 1 | | | Note: someone has to hand label all this data! Want to learn to predict labels of new, future digit images | 2 | 2 | | • | Features: The attributes used to make the digit decision Pixels: (6,8)=ON | / | 1 | | | Shape Patterns: NumComponents,
AspectRatio, NumLoops | S | ?? | ### Other Classification Tasks - In classification, we predict labels y (classes) for inputs x - Examples: - Spam detection (input: document, classes: spam / ham) - OCR (input: images, classes: characters) - Medical diagnosis (input: symptoms, classes: diseases) - Automatic essay grader (input: document, classes: grades) - Fraud detection (input: account activity, classes: fraud / no fraud) - Customer service email routing - ... many more - Classification is an important commercial technology! ### Important Concepts - Data: labeled instances, e.g. emails marked spam/ham - Training set - Held out set - Test set - Features: attribute-value pairs which characterize each x - Experimentation cycle - Learn parameters (e.g. model probabilities) on training set - (Tune hyperparameters on held-out set) - Compute accuracy of test set - Very important: never "peek" at the test set! - Evaluation - Accuracy: fraction of instances predicted correctly - Overfitting and generalization - Want a classifier which does well on test data - Overfitting: fitting the training data very closely, but not generalizing well Training Data Held-Out Data > Test Data ### Bayes Nets for Classification - One method of classification: - Use a probabilistic model! - Features are observed random variables F_i - Y is the query variable - Use probabilistic inference to compute most likely Y $$y = \operatorname{argmax}_y P(y|f_1 \dots f_n)$$ You already know how to do this inference ## Simple Classification Simple example: two binary features $$P(m|s,f)$$ direct estimate $$P(m|s,f) = \frac{P(s,f|m)P(m)}{P(s,f)} \qquad \qquad \text{Bayes estimate}$$ (no assumptions) $$P(m|s,f) = \frac{P(s|m)P(f|m)P(m)}{P(s,f)} \leftarrow Conditional independence$$ + $$\begin{cases} P(+m, s, f) = P(s|+m)P(f|+m)P(+m) \\ P(-m, s, f) = P(s|-m)P(f|-m)P(-m) \end{cases}$$ ## A Digit Recognizer Input: pixel grids Output: a digit 0-9 ## Naïve Bayes for Digits - Simple version: - One feature F_{ij} for each grid position <i,j> - Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image - Each input maps to a feature vector, e.g. $$Arr V = 0 \quad F_{0,0} = 0 \quad F_{0,1} = 0 \quad F_{0,2} = 1 \quad F_{0,3} = 1 \quad F_{0,4} = 0 \quad \dots \\ F_{15,15} = 0$$ - Here: lots of features, each is binary valued - Naïve Bayes model: $$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$ What do we need to learn? ### General Naïve Bayes A general naive Bayes model: $$|Y| \times |F|^n$$ parameters $$P(Y, F_1 \dots F_n) = \\ P(Y) \prod_i P(F_i|Y)$$ $|Y|$ parameters $|Y| = n \times |F| \times |Y|$ parameters - We only specify how each feature depends on the class - Total number of parameters is *linear* in n ### Inference for Naïve Bayes - Goal: compute posterior over causes - Step 1: get joint probability of causes and evidence $$P(Y, f_1 \dots f_n) =$$ $$P(y_1, f_1 \dots f_n)$$ $$P(y_2, f_1 \dots f_n)$$ $$\vdots$$ $$P(y_k, f_1 \dots f_n)$$ $$\begin{bmatrix} P(y_1, f_1 \dots f_n) \\ P(y_2, f_1 \dots f_n) \\ \vdots \\ P(y_k, f_1 \dots f_n) \end{bmatrix} \qquad \begin{bmatrix} P(f_1) \prod_i P(f_i|c_1) \\ P(f_2) \prod_i P(f_i|c_2) \\ \vdots \\ P(f_k) \prod_i P(f_i|c_k) \end{bmatrix}$$ - Step 2: get probability of evidence - Step 3: renormalize $$P(f_1 \dots f_n)$$ $$P(Y|f_1\ldots f_n)$$ ### General Naïve Bayes - What do we need in order to use naïve Bayes? - Inference (you know this part) - Start with a bunch of conditionals, P(Y) and the P(F_i|Y) tables - Use standard inference to compute P(Y|F₁...F_n) - Nothing new here - Estimates of local conditional probability tables - P(Y), the prior over labels - P(F_i|Y) for each feature (evidence variable) - These probabilities are collectively called the *parameters* of the model and denoted by θ - Up until now, we assumed these appeared by magic, but... - ...they typically come from training data: we'll look at this now ## Examples: CPTs ### Parameter Estimation - Estimating distribution of random variables like X or X | Y - Empirically: use training data - For each outcome x, look at the empirical rate of that value: $$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$ $$P_{\rm ML}({\bf r}) = 1/3$$ This is the estimate that maximizes the likelihood of the data $$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$ - Elicitation: ask a human! - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games) - Trouble calibrating # A Spam Filter Naïve Bayes spam filter Dear Sir. #### Data: - Collection of emails, labeled spam or ham - Note: someone has to hand label all this data! - Split into training, heldout, test sets secret. ... as being utterly confidencial and top TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT. First, I must solicit your confidence in this transaction, this is by virture of its nature 99 MILLION EMAIL ADDRESSES FOR ONLY \$99 #### Classifiers - Learn on the training set - (Tune it on a held-out set) - Test it on new emails Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened. ### Naïve Bayes for Text - Bag-of-Words Naïve Bayes: - Predict unknown class label (spam vs. ham) - Assume evidence features (e.g. the words) are independent - Warning: subtly different assumptions than before! - Generative model $$P(C, W_1 \dots W_n) = P(C) \prod_i P(W_i | C)$$ Word at position i, not ith word in the dictionary! - Tied distributions and bag-of-words - Usually, each variable gets its own conditional probability distribution P(F|Y) - In a bag-of-words model - Each position is identically distributed - All positions share the same conditional probs P(W|C) - Why make this assumption? # Example: Spam Filtering - Model: $P(C, W_1 ... W_n) = P(C) \prod_i P(W_i | C)$ - What are the parameters? P(C) ham : 0.66 spam: 0.33 P(W|spam) the: 0.0156 to: 0.0153 and: 0.0115 of: 0.0095 you: 0.0093 a: 0.0086 with: 0.0080 from: 0.0075 $P(W|\mathsf{ham})$ the: 0.0210 to: 0.0133 of: 0.0119 2002: 0.0110 with: 0.0108 from: 0.0107 and: 0.0105 a: 0.0100 Where do these tables come from? # Spam Example | Word | P(w spam) | P(w ham) | Tot Spam | Tot Ham | |---------|-----------|----------|----------|---------| | (prior) | 0.33333 | 0.66666 | -1.1 | -0.4 | # Overfitting # Example: Overfitting 2 wins!! # Example: Overfitting Posteriors determined by *relative* probabilities (odds ratios): ``` \frac{P(W|\mathsf{ham})}{P(W|\mathsf{spam})} ``` ``` \frac{P(W|\text{spam})}{P(W|\text{ham})} ``` ``` south-west : inf nation : inf morally : inf nicely : inf extent : inf seriously : inf ``` ``` screens : inf minute : inf guaranteed : inf $205.00 : inf delivery : inf signature : inf ``` What went wrong here? ### Generalization and Overfitting - Relative frequency parameters will overfit the training data! - Just because we never saw a 3 with pixel (15,15) on during training doesn't mean we won't see it at test time - Unlikely that every occurrence of "minute" is 100% spam - Unlikely that every occurrence of "seriously" is 100% ham - What about all the words that don't occur in the training set at all? - In general, we can't go around giving unseen events zero probability - As an extreme case, imagine using the entire email as the only feature - Would get the training data perfect (if deterministic labeling) - Wouldn't generalize at all - Just making the bag-of-words assumption gives us some generalization, but isn't enough - To generalize better: we need to smooth or regularize the estimates # Estimation: Smoothing Maximum likelihood estimates: $$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$ $$P_{\rm ML}({\bf r}) = 1/3$$ - Problems with maximum likelihood estimates: - If I flip a coin once, and it's heads, what's the estimate for P(heads)? - What if I flip 10 times with 8 heads? - What if I flip 10M times with 8M heads? - Basic idea: - We have some prior expectation about parameters (here, the probability of heads) - Given little evidence, we should skew towards our prior - Given a lot of evidence, we should listen to the data