# Planning Problems

 Want a sequence of actions to turn a start state into a goal state



 Unlike generic search, states and actions have internal structure, which allows better search methods

This slide deck courtesy of Dan Klein at UC Berkeley

# State Space

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)



#### Representation

- States described by propositions or ground predicates
- Sparse encoding (database semantics): all unstated literals are false
- Unique names: each object has its own single symbol

### Actions

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)



ACTION: Move(b,x,y)

PRECONDITIONS: On(b,x), Clear(b), Clear(y)

POSTCONDITIONS: On(b,y), Clear(x)

 $\neg On(b,x), \neg Clear(y)$ 

ACTION: Move(C,A,Table)

PRECONDITIONS: On(C,A), Clear(C),

Clear(Table)

POSTCONDITIONS: On(C,Table), Clear(A)

 $\neg On(C,A), \neg Clear(Table)$ 

#### Actions

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)



```
ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b \neq x), (b \neq y), (x \neq y)
POSTCONDITIONS: On(b,y), Clear(x)
\negOn(b,x), \negClear(y)

ACTION: MoveToTable(b,x)
PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (b \neq x)
POSTCONDITIONS: On(b,Table), Clear(x)
```

 $\neg On(b,x)$ 

# Start and Goal States



Start State

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)



On(B, C) On(A, B)

Important: goal satisfied by any state which entails goal list

[MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]

# Planning Problems



ACTION: MoveToTable(b,x)

PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x),  $(b \neq x)$ 

POSTCONDITIONS: On(b,Table), Clear(x)

 $\neg On(b,x)$ 

#### **Practice**

- Problem 10.2: "Applicable"
- Problem 10.3a,b: Representation
  - Where do they come from?
  - Could they be learned?

## Kinds of Plans



# Forward Search



Applicable actions

### **Backward Search**



$$g' = (g - ADD(a)) \cup Precond(a)$$