Planning Problems

- Want a sequence of actions to turn a start state into a goal state

- Unlike generic search, states and actions have internal structure, which allows better search methods

This slide deck courtesy of Dan Klein at UC Berkeley
State Space

- **Representation**
 - States described by propositions or ground predicates
 - Sparse encoding (database semantics): all unstated literals are false
 - Unique names: each object has its own single symbol

\[
\begin{align*}
\text{On(C, A)} \\
\text{On(A, Table)} \\
\text{On(B, Table)} \\
\text{Clear(C)} \\
\text{Clear(B)}
\end{align*}
\]
Actions

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

ACTION: Move(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y)
POSTCONDITIONS: On(b,y), Clear(x)
¬On(b,x), ¬Clear(y)

ACTION: Move(C,A,Table)
PRECONDITIONS: On(C,A), Clear(C),
Clear(Table)
POSTCONDITIONS: On(C,Table), Clear(A)
¬On(C,A), ¬Clear(Table)
Actions

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y), Block(b), Block(y), (b ≠ x), (b ≠ y), (x ≠ y)
POSTCONDITIONS: On(b,y), Clear(x)
¬On(b,x), ¬Clear(y)

ACTION: MoveToTable(b,x)
PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (b ≠ x)
POSTCONDITIONS: On(b,Table), Clear(x)
¬On(b,x)
Start and Goal States

Important: goals satisfied by any state which entails goal list

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)
...

[MoveToTable(C,A), Move(B,Table,C),
Move(A,Table,B)]

Start State

Goal State

On(B, C)
On(A, B)

Important: goal satisfied by any state which entails goal list
Planning Problems

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

Sparse encoding, but complete state spec

Goal
On(B, C)
On(A, B)

Set of goal states, only requirements specified (think unary constraints)

ACTION: MoveToTable(b,x)
PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (b ≠ x)
POSTCONDITIONS: On(b,Table), Clear(x)
 ¬On(b,x)

Action schema, instantiates to give specific ground actions

Which goal first?
Practice

- Problem 10.2: “Applicable”
- Problem 10.3a,b: Representation
 Where do they come from?
 Could they be learned?
Kinds of Plans

Sequential Plan

MoveToTable(C,A) > Move(B,Table,C) > Move(A,Table,B)

Partial-Order Plan

MoveToTable(C,A) > Move(A,Table,B)
Forward Search

Start State

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)
...

MoveToTable(C,A)

MoveToBlock(C,A,B)

MoveToBlock(B,Table,C)

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)
...
+Clear(A)
+On(C, Table)

Applicable actions
Backward Search

ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b \neq x), (b \neq y),
(x \neq y)
POSTCONDITIONS: On(b,y), Clear(x)
\neg On(b,x), \neg Clear(y)

MoveToBlock(A,Table,B)
MoveToBlock(A,x',B)

Relevant actions

$g' = (g - \text{ADD}(a)) \cup \text{Precond}(a)$