CS343
Artificial Intelligence

Prof: Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Afternoon, Colleagues
Good Afternoon, Colleagues

Are there any questions?
Logistics

- Classification assignment: Avg: 22.8 (out of 25), stddev: 2.79
Logistics

- Classification assignment: Avg: 22.8 (out of 25), stddev: 2.79
 - Mini-contest: 1. Jonny (86.2%) 2. George (85.6%) 3. Craig (76.4%)
Logistics

- Classification assignment: Avg: 22.8 (out of 25), stddev: 2.79
 - Mini-contest: 1. Jonny (86.2%) 2. George (85.6%) 3. Craig (76.4%)

- Late readings accepted until the night before the exam (5/9)

- Final: Thursday May 10th, 9am-noon
Tournament Qualifiers

- ShotCallaKoalas, NikolaAndTheNomNoms, SHARON, ManicMafia, Mayonnaise, AgentStanley, AgentSea, MediocreAgentsV2, GreyhoundAgents, Magnesium, Grepped, CaesarAgents, helloAgent, PsychoAgents, TenPoolWithSpeedAgents, O___O, NotMelsPacman, GentlemenAgents, RoleReversal
Tournament Qualifiers

- ShotCallaKoalas, NikolaAndTheNomNoms, SHARON, ManicMafia, Mayonnaise, AgentStanley, AgentSea, MediocreAgentsV2, GreyhoundAgents, Magnesium, Grepped, CaesarAgents, helloAgent, PsychoAgents, TenPoolWithSpeedAgents, O___O, NotMelsPacman, GentlemenAgents, RoleReversal

Congratulations to all!
Pending questions

- How could we verify strong AI?
- What’s the role of emotions?
- What’s the role of the Turing test?
- Can AI achieve “thinking”?
- When will there be an ultraintelligent agent?
- Does it matter to you if our “descendents” aren’t human?
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs —
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
- **Next:** MDPs — towards reinforcement learning
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next**: MDPs — towards reinforcement learning
 - Still know transition and reward function
Course Recap

- **First weeks**: search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next**: MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**
- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state
- **Before Midterm:** Reinforcement learning
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

- **Before Midterm:** Reinforcement learning
 - Policy without knowing transition or reward functions
Course Recap

- **First weeks:** search (BFS, A*, minimax, alpha-beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Know transition and cost (reward) functions
 - Either execute complete solution (deterministic) or search again at every step
 - **Know current state**

- **Next:** MDPs — towards reinforcement learning
 - Still know transition and reward function
 - Looking for a **policy** — optimal action from every state

- **Before Midterm:** Reinforcement learning
 - Policy without knowing transition or reward functions
 - **Still know state**
Course Recap (cont.)

- **Probabilistic Reasoning**: Now state is unknown
- Bayesian networks – state estimation/inference
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- Prior, net structure, and CPT’s known
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference
- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time

- **Week 12:** What if they’re not known?
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time

- **Week 12:** What if they’re not known?
 - Also Bayesian networks for **classification**
Course Recap (cont.)

- **Probabilistic Reasoning:** Now state is unknown
- Bayesian networks – state estimation/inference

- **Prior, net structure, and CPT’s known**
 - **Week 5:** Probability and utilities
 - **Week 9:** Conditional independence and inference (exact and approximate)
 - **Week 10:** Exact state estimation over time
 - **Week 11:** Approximate state estimation over time

- **Week 12:** What if they’re not known?
 - Also Bayesian networks for **classification**
 - A type of **machine learning**
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
Course Recap (cont.)

- **Week 13**: Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.
Course Recap (cont.)

- **Week 13**: Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14**: Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.

- **Week 15**: Philosophical foundations and ethics
Course Recap (cont.)

- **Week 13:** Machine Learning
 - Just a taste – focus on concept learning = classification
 - Perceptrons, SVMs, MIRA
 - Didn’t cover unsupervised learning

- **Week 14:** Classical planning
 - Reasoning with first order representations
 - So far we had dealt only with propositions
 - Back to known transitions, known state, etc.

- **Week 15:** Philosophical foundations and ethics

 It’s all about building agents

 Sense, decide, act
Course Recap (cont.)

• **Week 13:** Machine Learning
 – Just a taste – focus on concept learning = classification
 – Perceptrons, SVMs, MIRA
 – Didn’t cover unsupervised learning

• **Week 14:** Classical planning
 – Reasoning with first order representations
 – So far we had dealt only with propositions
 – Back to known transitions, known state, etc.

• **Week 15:** Philosophical foundations and ethics

 It’s all about building agents
 Sense, decide, act
 Maximize expected utility

Peter Stone
Topics not covered

- Constraint satisfaction (Chapter 6)
- Knowledge representation and reasoning (Chapters 7-9, 11, 12)
- Game theory and auctions (Sections 17.5, 17.6)
- Aspects of learning (Chapters 18, 19)
- Natural language (Chapters 22, 23)
- Vision (Chapter 24)
- Robotics (Chapter 25)
Final Exam

- Thursday May 10th, 9am-noon
Final Exam

- Thursday May 10th, 9am-noon
- I may be late - Daniel will proctor beginning
Final Exam

- Thursday May 10th, 9am-noon
- I may be late - Daniel will proctor beginning
 - Office hours on Tuesday may change
 - Available by appointment if you want to meet
Final Exam

- Thursday May 10th, 9am-noon
- I may be late - Daniel will proctor beginning
 - Office hours on Tuesday may change
 - Available by appointment if you want to meet
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
Final Exam

- Thursday May 10th, 9am-noon

- I may be late - Daniel will proctor beginning
 - Office hours on Tuesday may change
 - Available by appointment if you want to meet

- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning

- Striving for similar difficulty to midterm
Final Exam

- Thursday May 10th, 9am-noon
- I may be late - Daniel will proctor beginning
 - Office hours on Tuesday may change
 - Available by appointment if you want to meet
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1 hour and 15 minutes
Final Exam

- Thursday May 10th, 9am-noon
- I may be late - Daniel will proctor beginning
 - Office hours on Tuesday may change
 - Available by appointment if you want to meet
- Covers the whole semester
 - Slightly heavier emphasis on material since midterm
 - Certainly a question on planning
- Striving for similar difficulty to midterm
- 3 hours rather than 1 hour and 15 minutes
- Sample - Dan Klein’s Spring 2009 exam with solutions
My Perspective

• I’ve enjoyed teaching this class!
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
My Perspective

• I’ve enjoyed teaching this class!
• Wasn’t sure at first if I could cover all this material
• I’ve been impressed by the levels of questions and understanding
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Daniel for handling all the programming assignments!
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Daniel for handling all the programming assignments!
- I’m proud of all of you for sticking with it through what I think was a demanding course
My Perspective

- I’ve enjoyed teaching this class!
- Wasn’t sure at first if I could cover all this material
- I’ve been impressed by the levels of questions and understanding
 - You kept me on my toes
 - I learned tons!
- Thanks to Daniel for handling all the programming assignments!
- I’m proud of all of you for sticking with it through what I think was a demanding course

THANKS!!!
Surveys

- Daniel’s and my surveys
- Positive and negative feedback useful
- Invitation to send more feedback by email
 - If/when I teach the course again, how should it change?
- Most important: course rating, instructor rating, written comments