Al Adjacent Fields

Philosophy:

* Logic, methods of reasoning

" Mind as physical system

" Foundations of learning, language, rationality
Mathematics

" Formal representation and proof

* Algorithms, computation, (un)decidability, (in)tractability

* Probability and statistics
Psychology

" Adaptation

" Phenomena of perception and motor control

* Experimental techniques (psychophysics, etc.)
Economics: formal theory of rational decisions
Linguistics: knowledge representation, grammar
Neuroscience: physical substrate for mental activity
Control theory:

" homeostatic systems, stability

" simple optimal agent designs

This slide deck courtesy of Dan Klein at UC Berkeley

How Much of Al is Math?

* A lot, but not right away

* Understanding probabilities
will help you a great deal

* |n later weeks, there will be
many more equations

Countdown
to math

MDPs (A
(math)

1 st
lecture

Reflex Agents

" Reflex agents:

" Choose action based on ..
current percept (and c e s e b e e
maybe memory) 4

* May have memory or a R
model of the world’s
current state

" Do not consider the
future consequences of
their actions

= Consider how the world
IS

L L L

" Can a reflex agent be
rational?

Goal Based Agents

" (Goal-based agents:
" Plan ahead ¢« 0 e

L] L] L] L] L] L] L] L]

" Ask “what if”
¢

" Decisions based on P
(hypothesized)
consequences of
actions

= Must have a model of
how the world evolves
In response to actions

" Consider how the
world WOULD BE

Search Problems

" A search problem consists of:

yreee [- 1.1 1.I'

. “N”, 1.0
" A successor function u
(with actions, costs)
\

“E”, 1.0

" A start state and a goal test

" A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

Example: Romania

Eforie

State space:

= Cities
Successor
function:

" Roads: Go to adj

city with cost = dist

Start state:

"= Arad

Goal test:

" |s state ==
Bucharest?

Solution?

What's in a State Space?

The world state ¢ ..
specifies every L.
last detail of the e
environment e

A search state keeps only the details needed (abstraction)

" Problem: Pathing " Problem: Eat-All-Dots
" States: (x,y) location = States: {(x,y), dot booleans}
" Actions: NSEW " Actions: NSEW
" Successor: update location " Successor: update location
only and possibly a dot boolean

" Goal test: is (x,y)=END " Goal test: dots all false

State Space Sizes”?

" World state:
" Agent positions: 120
" Food count: 30
" Ghost positions: 12
" Agent facing: NSEW

" How many
" World states?
120x(23%)x(122)x4
" States for pathing?
120
" States for eat-all-dots?
120x(2°°)

State Space Graphs

= State space graph: A
mathematical
representation of a

search problem

" For every search problem,
there’s a corresponding
state space graph

= The successor function is
represented by arcs

. . Ridiculously tiny search graph
" We can rarely build this for a tiny search problem

graph in memory (so
we don't)

Search Trees

N 10— — € 1.0

" A search tree:
" This is a “what if” tree of plans and outcomes
Start state at the root node
Children correspond to successors
" Nodes contain states, correspond to PLANS to those states
" For most problems, we can never actually build the whole tree

Another Search Tree

" Search:
" Expand out possible plans
" Maintain a fringe of unexpanded plans
" Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
™~
" Important ideas:
" Fringe Detailed pseudocode
. Expansion Is in the book!

" Exploration strategy

" Main question: which fringe nodes to explore?

Example: Tree Search

State Graphs vs. Search Trees

Each NODE in in the
search tree is an
entire PATH in the

problem graph.
S
s
e P
We construct both b C e h r q
on demand — and | N N
we construct as a a h r p q f
little as possible. N | 2N
p q f q c G
| /\ |
a

States vs. Nodes

" Nodes in state space graphs are problem states
" Represent an abstracted state of the world
" Have successors, can be goal / non-goal, have multiple predecessors
" Nodes in search trees are plans
" Represent a plan (sequence of actions) which results in the node’s state
" Have a problem state and one parent, a path length, a depth & a cost
" The same problem state may be achieved by multiple search tree nodes

Problem States Search Nodes

Parent

us
.

Depth 5

Depth 6

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack

Review: Breadth First Search

Strategy: expand
shallowest node first

Implementation:
Fringe is a FIFO
queue

p
Search — N ——
)@
Tiers |
(@
N

Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?
Optimal? Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Variables:

Number of states in the problem (huge)

b The average branching factor B
(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm

Complete

Optimal

Time

Space

DFS Depth First

Search

N

N

Infinite

Infinite

" Infinite paths make DFS incomplete...

= How can we fix this?

AL
(2
>

DFS

" With cycle checking, DFS is complete.”

[b 1 node

b nodes

b2 nodes

m tiers <

b™ nod

\ S nodes
Algorithm Complete |[Optimal |Time Space
DFS g@:;i?ng Y N O(bm+1) O(bm)

" When is DFS optimal?

* Or graph search — next lecture.

BFS

Algorithm Complete |Optimal |Time Space
/ Path N
DFS VC\)Ihe(?king Y N O 1) O(bm)
BFS Y N* O(b*+h) O(b*%)
-
b 1 node
_ b nodes
s tiers <
X b? nodes
_ < ?\ bs nodes
O
b™ nodes
/

When is BFS optimal?

Comparisons

" When will BFS outperform DFS?

" When will DFS outperform BFS?

lterative Deepening

lterative deepening: BFS using DFS as a subroutine:

3. Do a DFS which only searches for paths of
length 1 or less.

4. If “1” failed, do a DFS which only searches paths

of length 2 or less. <Q
5. If “2” failed, do a DFS which only searches paths
of length 3 or less.
....and so on.

Algorithm Complete |Optimal [Time Space
DFS | Checkng | Y N (") O(bm)
BFS Y N* O(b**) O(%)
ID Y N* O(b*+7) O(bs)

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

4 e

@ 3
/N
B+ 7
Cost @6 3
contours

Priority Queue Refresher

" A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pg.push(key, value)

inserts (key, value) into the queue.

Pg.pop()

returns the key with the lowest value, and
removes it from the queue.

" You can decrease a key’s priority by pushing it again
" Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

" WEe'll need priority queues for cost-sensitive search methods

Uniform Cost Search

Algorithm Complete |Optimal [Time Space
DFS Checing | Y N O(b') O(bm)
BFS Y N O(b*+) O(b?)
UCS Y* Y O(bc7) Ob7)
4
. *UCS can fall if
C¥/e tiers < actions can get
arbitrarily cheap

Uniform Cost Search

" What will UCS do for this graph??

" What does this mean for completeness?

Uniform Cost Issues

" Remember: explores
increasing cost contours

" The good: UCS is
complete and optimal!

" The bad:
" Explores options in every

“direction”
" No information about goal
location Goal

Search Heuristics

" Any estimate of how close a state is to a goal
" Designed for a particular search problem
" Examples: Manhattan distance, Euclidean distance

Heuristics

Arad [

118

[] Vaslui

Timisoara

142

11 Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta []

N Eforie
[] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Best First / Greedy Search

" Expand the node that seems closest...

366 380 193

Caibio P ucharesd

253 0

" What can go wrong?

Best First / Greedy Search

= A common case:

" Best-first takes you straight
to the (wrong) goal

" Worst-case: like a badly-
guided DFS in the worst
case

" Can explore everything

" Can get stuck in loops if no b
cycle checking

" Like DFS in completeness
(finite states w/ cycle ®
checking)

Search Gone Wrong?

ARCTIC OCEAN

=z
ICELAND 2@ 5 x
l o s @
. SERE
K r. .RUSSIA s % gz
ATLANTIC iRy ﬂ'};; b o /=
i D =&
" Helsinki Tver e d
felngfors % &
Rigﬂ. -H.‘.u-_ ?ﬁ
O, Smblensi g %

VEGE o2 :
=
Biizty=tok é’{ BELAI.U.ISIFU'
POLAHD -1(;"'“‘”“'" 0
@ O R ANE
P chiphiily

L mHGARY Vs
I ROMAHIA %

V' Zoom on map di

Start: Haugesund, Rogaland, Morway

End: Trondheim, Sar-Trandelag, Morway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.nofalltidmoro

Extra Work?

" Failure to detect repeated states can cause
exponentially more work (why?)

9

Q)

"\Hf‘\ /*
J \J u

Graph Search

" In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

: EN
b/m h o r q
\@ N

h r f
° /\\@@/\
RPN

q (|3 G a

Graph Search

" Very simple fix: never expand a state type twice

closed <— an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE['HMI(:] Is not in closed then

add STATE';[HU:I(:] to closed

fringe — INSERTA LL(EXPAND(node, problem), fringe)

end

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

(=

" Can this wreck completeness? Why or why not?

" How about optimality? Why or why not?

Some Hints

" Graph search is almost always better than
tree search (when not?)

" Implement your closed list as a dict or set!

" Nodes are conceptually paths, but better to
represent with a state, cost, last action, and
reference to the parent node

Best First Greedy Search

Algorithm Complete |Optimal |[Time Space

Greedy Best-First Y N O(b™) O(b™)

Search

N

" What do we need to do to make it complete?
= Can we make it optimal? Next class!

Best First / Greedy Search

= Strategy: expand the closest node to the goal

[demo: greedy]

Example: Tree Search

e° N2

: 0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

