Al Adjacent Fields

Philosophy:

* Logic, methods of reasoning

" Mind as physical system

" Foundations of learning, language, rationality
Mathematics

" Formal representation and proof

* Algorithms, computation, (un)decidability, (in)tractability

* Probability and statistics
Psychology

" Adaptation

" Phenomena of perception and motor control

* Experimental techniques (psychophysics, etc.)
Economics: formal theory of rational decisions
Linguistics: knowledge representation, grammar
Neuroscience: physical substrate for mental activity
Control theory:

" homeostatic systems, stability

" simple optimal agent designs

This slide deck courtesy of Dan Klein at UC Berkeley



How Much of Al is Math?

* A lot, but not right away

* Understanding probabilities
will help you a great deal

* |n later weeks, there will be
many more equations

Countdown
to math

MDPs ( A
(math)

1 st
lecture




Reflex Agents

" Reflex agents:

" Choose action based on ..
current percept (and c e s e b e e
maybe memory) 4

* May have memory or a R
model of the world’s
current state

" Do not consider the
future consequences of
their actions

= Consider how the world
IS

L L L

" Can a reflex agent be
rational?



Goal Based Agents

" (Goal-based agents:
" Plan ahead ¢« 0 e

L] L] L] L] L] L] L] L]

" Ask “what if”
¢

" Decisions based on P
(hypothesized)
consequences of
actions

= Must have a model of
how the world evolves
In response to actions

" Consider how the
world WOULD BE




Search Problems

" A search problem consists of:

yreee [ - 1.1 1.I'

. “N”, 1.0
" A successor function u
(with actions, costs)
\

“E”, 1.0

" A start state and a goal test

" A solution is a sequence of actions (a plan)
which transforms the start state to a goal state



Example: Romania

Eforie

State space:

= Cities
Successor
function:

" Roads: Go to adj

city with cost = dist

Start state:

"= Arad

Goal test:

" |s state ==
Bucharest?

Solution?



What's in a State Space?

The world state ¢ ..
specifies every L.
last detail of the e
environment e

A search state keeps only the details needed (abstraction)

" Problem: Pathing " Problem: Eat-All-Dots
" States: (x,y) location = States: {(x,y), dot booleans}
" Actions: NSEW " Actions: NSEW
" Successor: update location " Successor: update location
only and possibly a dot boolean

" Goal test: is (x,y)=END " Goal test: dots all false



State Space Sizes”?

" World state:
" Agent positions: 120
" Food count: 30
" Ghost positions: 12
" Agent facing: NSEW

" How many
" World states?
120x(23%)x(122)x4
" States for pathing?
120
" States for eat-all-dots?
120x(2°°)




State Space Graphs

= State space graph: A
mathematical
representation of a

search problem

" For every search problem,
there’s a corresponding
state space graph

= The successor function is
represented by arcs

. . Ridiculously tiny search graph
" We can rarely build this for a tiny search problem

graph in memory (so
we don't)



Search Trees

N 10— — € 1.0

" A search tree:
" This is a “what if” tree of plans and outcomes
Start state at the root node
Children correspond to successors
" Nodes contain states, correspond to PLANS to those states
" For most problems, we can never actually build the whole tree



Another Search Tree

" Search:
" Expand out possible plans
" Maintain a fringe of unexpanded plans
" Try to expand as few tree nodes as possible



General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
™~
" Important ideas:
" Fringe Detailed pseudocode
. Expansion Is in the book!

" Exploration strategy

" Main question: which fringe nodes to explore?



Example: Tree Search




State Graphs vs. Search Trees

Each NODE in in the
search tree is an
entire PATH in the

problem graph.
S
s
e P
We construct both b C e h r q
on demand — and | N N
we construct as a a h r p q f
little as possible. N | 2N
p q f q c G
| /\ |
a



States vs. Nodes

" Nodes in state space graphs are problem states
" Represent an abstracted state of the world
" Have successors, can be goal / non-goal, have multiple predecessors
" Nodes in search trees are plans
" Represent a plan (sequence of actions) which results in the node’s state
" Have a problem state and one parent, a path length, a depth & a cost
" The same problem state may be achieved by multiple search tree nodes

Problem States Search Nodes

Parent

----------------------
---------
-------
us
.

Depth 5

Depth 6




Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack




Review: Breadth First Search

Strategy: expand
shallowest node first

Implementation:
Fringe is a FIFO
queue

p
Search — N ——
)@
Tiers |
(@
N




Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?
Optimal?  Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Variables:

Number of states in the problem (huge)

b The average branching factor B
(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree




DFS

Algorithm

Complete

Optimal

Time

Space

DFS Depth First

Search

N

N

Infinite

Infinite

" Infinite paths make DFS incomplete...

= How can we fix this?

AL
(2
>




DFS

" With cycle checking, DFS is complete.”

[ b 1 node

b nodes

b2 nodes

m tiers <

b™ nod

\ S nodes
Algorithm Complete |[Optimal |Time Space
DFS g@:;i?ng Y N O(bm+1) O(bm)

" When is DFS optimal?

* Or graph search — next lecture.




BFS

Algorithm Complete |Optimal |Time Space
/ Path N
DFS VC\)Ihe(?king Y N O 1) O(bm)
BFS Y N* O(b*+h) O(b*%)
-
b 1 node
_ b nodes
s tiers <
X b? nodes
\_ < ?\ bs nodes
O
b™ nodes
/

When is BFS optimal?




Comparisons

" When will BFS outperform DFS?

" When will DFS outperform BFS?



lterative Deepening

lterative deepening: BFS using DFS as a subroutine:

3. Do a DFS which only searches for paths of
length 1 or less.

4. If “1” failed, do a DFS which only searches paths

of length 2 or less. <Q
5. If “2” failed, do a DFS which only searches paths
of length 3 or less.
....and so on.

Algorithm Complete |Optimal  [Time Space
DFS | Checkng | Y N (") O(bm)
BFS Y N* O(b**) O(%)
ID Y N* O(b*+7) O(bs)




Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.



Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

4 e

@ 3
/N
B+ 7
Cost @6 3
contours




Priority Queue Refresher

" A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pg.push(key, value)

inserts (key, value) into the queue.

Pg.pop()

returns the key with the lowest value, and
removes it from the queue.

" You can decrease a key’s priority by pushing it again
" Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

" WEe'll need priority queues for cost-sensitive search methods




Uniform Cost Search

Algorithm Complete |Optimal [Time Space
DFS  Checing | Y N O(b') O(bm)
BFS Y N O(b*+) O(b?)
UCS Y* Y O(bc7) Ob7)
4
. *UCS can fall if
C¥/e tiers < actions can get
arbitrarily cheap




Uniform Cost Search

" What will UCS do for this graph??

" What does this mean for completeness?



Uniform Cost Issues

" Remember: explores
increasing cost contours

" The good: UCS is
complete and optimal!

" The bad:
" Explores options in every

“direction”
" No information about goal
location Goal



Search Heuristics

" Any estimate of how close a state is to a goal
" Designed for a particular search problem
" Examples: Manhattan distance, Euclidean distance




Heuristics

Arad [

118

[ ] Vaslui

Timisoara

142

11 Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta []

N Eforie
[ ] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374



Best First / Greedy Search

" Expand the node that seems closest...

366 380 193

Caibio P ucharesd

253 0

" What can go wrong?




Best First / Greedy Search

= A common case:

" Best-first takes you straight
to the (wrong) goal

" Worst-case: like a badly-
guided DFS in the worst
case

" Can explore everything

" Can get stuck in loops if no b
cycle checking

" Like DFS in completeness
(finite states w/ cycle ®
checking)




Search Gone Wrong?

ARCTIC OCEAN
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Start: Haugesund, Rogaland, Morway

End: Trondheim, Sar-Trandelag, Morway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes
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Extra Work?

" Failure to detect repeated states can cause
exponentially more work (why?)

9

Q )

"\Hf‘\ /*
J \J u



Graph Search

" In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

: EN
b/m h o r q
\@ N

h r f
° /\\@@/\
RPN

q (|3 G a



Graph Search

" Very simple fix: never expand a state type twice

closed <— an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE['HMI(:] Is not in closed then

add STATE';[HU:I(:] to closed

fringe — INSERTA LL(EXPAND(node, problem), fringe)

end

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

(=

" Can this wreck completeness? Why or why not?

" How about optimality? Why or why not?




Some Hints

" Graph search is almost always better than
tree search (when not?)

" Implement your closed list as a dict or set!

" Nodes are conceptually paths, but better to
represent with a state, cost, last action, and
reference to the parent node



Best First Greedy Search

Algorithm Complete |Optimal |[Time Space

Greedy Best-First Y N O(b™) O(b™)

Search

N

" What do we need to do to make it complete?
= Can we make it optimal? Next class!




Best First / Greedy Search

= Strategy: expand the closest node to the goal

[demo: greedy]






Example: Tree Search

e° N2

: 0
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