AI Adjacent Fields

- Philosophy:
 - Logic, methods of reasoning
 - Mind as physical system
 - Foundations of learning, language, rationality

- Mathematics
 - Formal representation and proof
 - Algorithms, computation, (un)decidability, (in)tractability
 - Probability and statistics

- Psychology
 - Adaptation
 - Phenomena of perception and motor control
 - Experimental techniques (psychophysics, etc.)

- Economics: formal theory of rational decisions
- Linguistics: knowledge representation, grammar
- Neuroscience: physical substrate for mental activity
- Control theory:
 - Homeostatic systems, stability
 - Simple optimal agent designs

This slide deck courtesy of Dan Klein at UC Berkeley
How Much of AI is Math?

- A lot, but not right away
- Understanding probabilities will help you a great deal
- In later weeks, there will be many more equations
Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)
 - May have memory or a model of the world’s current state
 - Do not consider the future consequences of their actions
 - Consider how the world IS

- Can a reflex agent be rational?
Goal Based Agents

- Goal-based agents:
 - Plan ahead
 - Ask “what if”
 - Decisions based on (hypothesized) consequences of actions
 - Must have a model of how the world evolves in response to actions
 - Consider how the world WOULD BE
A search problem consists of:

- A state space
- A successor function (with actions, costs)
- A start state and a goal test

A solution is a sequence of actions (a plan) which transforms the start state to a goal state.
Example: Romania

- **State space:**
 - Cities

- **Successor function:**
 - Roads: Go to adj city with cost = dist

- **Start state:**
 - Arad

- **Goal test:**
 - Is state == Bucharest?

- **Solution?**
What’s in a State Space?

The *world state* specifies every last detail of the environment.

A *search state* keeps only the details needed (abstraction).

- **Problem: Pathing**
 - States: \((x,y)\) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is \((x,y)\) = END

- **Problem: Eat-All-Dots**
 - States: \(\{(x,y), \text{dot booleans}\}\)
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false
State Space Sizes?

- **World state:**
 - Agent positions: 120
 - Food count: 30
 - Ghost positions: 12
 - Agent facing: NSEW

- **How many**
 - World states?
 \[120 \times (2^{30}) \times (12^2) \times 4\]
 - States for pathing?
 120
 - States for eat-all-dots?
 \[120 \times (2^{30})\]
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - For every search problem, there’s a corresponding state space graph
 - The successor function is represented by arcs

- We can rarely build this graph in memory (so we don’t)
Search Trees

- A search tree:
 - This is a “what if” tree of plans and outcomes
 - Start state at the root node
 - Children correspond to successors
 - Nodes contain states, correspond to PLANS to those states
 - For most problems, we can never actually build the whole tree
- **Search:**
 - Expand out possible plans
 - Maintain a *fringe* of unexpanded plans
 - Try to expand as few tree nodes as possible
General Tree Search

function Tree-Search(problem, strategy) **returns** a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

- **Important ideas:**
 - Fringe
 - Expansion
 - Exploration strategy

- **Main question:** which fringe nodes to explore?

Detailed pseudocode is in the book!
Example: Tree Search
State Graphs vs. Search Trees

Each NODE in the search tree is an entire PATH in the problem graph.

We construct both on demand – and we construct as little as possible.
States vs. Nodes

- Nodes in state space graphs are problem states
 - Represent an abstracted state of the world
 - Have successors, can be goal / non-goal, have multiple predecessors

- Nodes in search trees are plans
 - Represent a plan (sequence of actions) which results in the node’s state
 - Have a problem state and one parent, a path length, a depth & a cost
 - The same problem state may be achieved by multiple search tree nodes
Review: Depth First Search

Strategy: expand deepest node first

Implementation: Fringe is a LIFO stack
Review: Breadth First Search

Strategy: expand shallowest node first

Implementation: Fringe is a FIFO queue
Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?
Optimal? Guaranteed to find the least cost path?
Time complexity?
Space complexity?

Variables:

<table>
<thead>
<tr>
<th>(n)</th>
<th>Number of states in the problem (huge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>The average branching factor (B) (the average number of successors)</td>
</tr>
<tr>
<td>(C^*)</td>
<td>Cost of least cost solution</td>
</tr>
<tr>
<td>(s)</td>
<td>Depth of the shallowest solution</td>
</tr>
<tr>
<td>(m)</td>
<td>Max depth of the search tree</td>
</tr>
</tbody>
</table>
Infinite paths make DFS incomplete…

How can we fix this?
With cycle checking, DFS is complete.*

When is DFS optimal?

* Or graph search – next lecture.
BFS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>$O(b^{m+1})$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>$O(b^{s+1})$</td>
<td>$O(b^s)$</td>
</tr>
</tbody>
</table>

- **Complete**: Indicates whether the algorithm can complete the task.
- **Optimal**: Indicates whether the algorithm is optimal.
- **Time**: Big O notation for time complexity.
- **Space**: Big O notation for space complexity.

Diagram
- **s tiers**: Number of tiers in the structure.
- **1 node**: Top node.
- **b nodes**: Nodes in the first tier.
- **b^2 nodes**: Nodes in the second tier.
- **b^s nodes**: Nodes in the s-th tier.
- **b^m nodes**: Total nodes in the entire structure.

- **When is BFS optimal?**
Comparisons

- When will BFS outperform DFS?

- When will DFS outperform BFS?
Iterative Deepening

Iterative deepening: BFS using DFS as a subroutine:

3. Do a DFS which only searches for paths of length 1 or less.
4. If “1” failed, do a DFS which only searches paths of length 2 or less.
5. If “2” failed, do a DFS which only searches paths of length 3 or less.

….and so on.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>Y</td>
<td>N</td>
<td>O(b^{m+1})</td>
<td>O(b^m)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^{s+1})</td>
<td>O(b^s)</td>
</tr>
<tr>
<td>ID</td>
<td>Y</td>
<td>N*</td>
<td>O(b^{s+1})</td>
<td>O(b^s)</td>
</tr>
</tbody>
</table>
Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path. We will quickly cover an algorithm which does find the least-cost path.
Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue (priority: cumulative cost)
A priority queue is a data structure in which you can insert and retrieve (key, value) pairs with the following operations:

<table>
<thead>
<tr>
<th>pq.push(key, value)</th>
<th>inserts (key, value) into the queue.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pq.pop()</td>
<td>returns the key with the lowest value, and removes it from the queue.</td>
</tr>
</tbody>
</table>

- You can decrease a key’s priority by pushing it again
- Unlike a regular queue, insertions aren’t constant time, usually $O(\log n)$
- We’ll need priority queues for cost-sensitive search methods
Uniform Cost Search

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>$O(b^{m+1})$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N</td>
<td>$O(b^{s+1})$</td>
<td>$O(b^s)$</td>
</tr>
<tr>
<td>UCS</td>
<td>Y*</td>
<td>Y</td>
<td>$O(b^{C*/\varepsilon})$</td>
<td>$O(b^{C*/\varepsilon})$</td>
</tr>
</tbody>
</table>

$C*/\varepsilon$ tiers

* UCS can fail if actions can get arbitrarily cheap
Uniform Cost Search

- What will UCS do for this graph?

- What does this mean for completeness?
Uniform Cost Issues

- Remember: explores increasing cost contours

- The good: UCS is complete and optimal!

- The bad:
 - Explores options in every “direction”
 - No information about goal location
Search Heuristics

- Any *estimate* of how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance

![Diagram of a maze with estimated distances marked: 5, 10, and 11.2]
Best First / Greedy Search

- Expand the node that seems closest...

- What can go wrong?
Best First / Greedy Search

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking

- Like DFS in completeness (finite states w/ cycle checking)
Search Gone Wrong?
Extra Work?

- Failure to detect repeated states can cause exponentially more work (why?)
In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- Very simple fix: never expand a state type twice

```plaintext
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
    if fringe is empty then return failure
    node ← REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE[node] is not in closed then
        add STATE[node] to closed
        fringe ← INSERTALL(EXPAND(node, problem), fringe)
    end
end
```

- Can this wreck completeness? Why or why not?
- How about optimality? Why or why not?
Some Hints

- Graph search is almost always better than tree search (when not?)

- Implement your closed list as a dict or set!

- Nodes are conceptually paths, but better to represent with a state, cost, last action, and reference to the parent node
Best First Greedy Search

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy Best-First Search</td>
<td>\exists^*</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
</tbody>
</table>

- **What do we need to do to make it complete?**
- **Can we make it optimal?** Next class!
Best First / Greedy Search

- Strategy: expand the closest node to the goal

[Diagram showing a graph with nodes labeled with distances and heuristics, and arrows indicating paths with corresponding costs.]
Example: Tree Search