Recap: Search

Search problem:

- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
 This slide deck courtesy of Dan Klein at UC Berkeley

Search Gone Wrong?

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

Example: Heuristic Function

	\
Straight-line distar	ice
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Best First (Greedy)

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

• Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A*: Blocking

Notation:

- g(n) = cost to node n
- h(n) = estimated cost from nto the nearest goal (heuristic)
- f(n) = g(n) + h(n) =estimated total cost via n
- G*: a lowest cost goal node
- G: another goal node

Optimality of A*: Blocking

Proof:

- What could go wrong?
- We'd have to have to pop a suboptimal goal G off the fringe before G*
- This can't happen:
 - Imagine a suboptimal goal G is on the queue
 - Some node n which is a subpath of G* must also be on the fringe (why?)
 - n will be popped before G

$$f(n) = g(n) + h(n)$$

$$g(n) + h(n) \le g(G^*)$$

$$g(G^*) < g(G)$$

$$g(G) = f(G)$$

$$f(n) < f(G)$$

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

 Uniform-cost expanded in all directions

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too (why?)

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

 Heuristic: Number of tiles misplaced

Why is it admissible?

Start State

Goal State

• h(start) = 8

 This is a relaxedproblem heuristic

	optimal path has length			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

8 Puzzle II

TILES

MANHATTAN

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- h(start) =3 + 1 + 2 + ...= 18

Start St

	1	2
3	4	5
6	7	8

Goal State

	Average nodes expanded when optimal path has length			
	4 steps	8 steps	12 steps	
	13	39	227	
٧	12	25	73	

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

Dominance: h_a ≥ h_c if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

• ...

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

 In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
 - If not new, skip it
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Graph Search

Very simple fix: never expand a state twice

```
function GRAPH-SEARCH (problem, fringe) returns a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow Remove-Front(fringe)
       if Goal-Test(problem, State[node]) then return node
       if State[node] is not in closed then
            add STATE[node] to closed
            fringe \leftarrow InsertAll(Expand(node, problem), fringe)
   end
```

Can this wreck completeness? Optimality?

A* Graph Search Gone Wrong?

State space graph

A h=4 S h=1 h=2 3 В h=1 G h=0

Search tree

Consistency of Heuristics

- Stronger than admissibility
- Definition:

```
cost(A to C) + h(C) \ge h(A)

cost(A to C) \ge h(A) - h(C)

real cost \ge cost implied by heuristic
```

- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Optimality of A* Graph Search

Proof:

- New possible problem: some n on path to G* isn't in queue when we need it, because some worse n' for the same state dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor of n that was on the queue when n' was popped
- f(p) < f(n) because of consistency
- f(n) < f(n') because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and (estimates of) forward costs

 A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems

Mazeworld Demos

Graph Search, Reconsidered

- Idea: never expand a state twice
- How to implement:
 - Tree search + list of expanded states (closed list)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
- Python trick: store the closed list as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)

 Proof idea: optimal goals have lower f value, so get expanded first

Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)
 Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
 - Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There's a problem with this argument. What are we assuming is true?

Course Scheduling

- From the university's perspective:
 - Set of courses {c₁, c₂, ... c_n}
 - Set of room / times $\{r_1, r_2, \dots r_n\}$
 - Each pairing (c_k, r_m) has a cost w_{km}
 - What's the best assignment of courses to rooms?
- States: list of pairings
- Actions: add a legal pairing
- Costs: cost of the new pairing
- Admissible heuristics?

Consistency

- Wait, how do we know parents have better f-vales than their successors?
- Couldn't we pop some node n, and find its child n' to have lower f value?

- What can we require to prevent these inversions? $c(n, a, n') \ge h(n) h(n')$
- Consistency:
 - Real cost must always exceed reduction in heuristic
 - Like admissibility, but better!