Recap: Search

" Search problem:
" States (configurations of the world)

" Transition function: a function from states and actions
to lists of (state, cost) pairs; drawn as a graph

" Start state and goal test

" Search tree:
" Nodes: represent plans for reaching states
" Plans have costs (sum of action costs)

" Search Algorithm:
" Systematically builds a search tree

" Chooses an ordering of the fringe (unexplored nodes)
This slide deck courtesy of Dan Klein at UC Berkeley

A* Graph Search Gone Wrong?

State space graph Search tree

@\ S (0+2)

1 1 4/\>

=4 1@ A (1+4) B (1+1)
= | |

Consistency of Heuristics

= Stronger than admissibility
@\ = Definition:

@ cost(Ato C) + h(C) = h(A)
=1 cost(A to C) = h(A) - h(C)
3 real cost = cost implied by heuristic

= Consequences:

= The f value along a path never

decreases

= A” graph search is optimal

Optimality of A* Graph Search

Proof:

= New possible problem: some n on path to
G* isn’t in queue when we need it,
because some worse n’for the same state
dequeued and expanded first (disaster!)

= Take the highest such nin tree G~

= Let p be the ancestor of nthat was on the
queue when n’ was popped

* f(p) < f(n) because of consistency

" f(n) < f(n’) because n’is suboptimal

= pwould have been expanded before n’
= Contradiction!

e

Optimality

Tree search:
= A*is optimal if heuristic is admissible (and non-negative)
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible / consistent
heuristics

* Heuristic design is key: often use relaxed
problems

Local Search Methods

* Tree search keeps unexplored alternatives
on the fringe (ensures completeness)

= Local search: improve what you have until
you can’'t make it better

= Generally much faster and more memory
efficient (but incomplete)

Types of Search Problems

= Planning problems:

* We want a path to a solution
(examples?)

= Usually want an optimal path —
» [ncremental formulations

= |dentification problems:

* We actually just want to know what
the goal is (examples?)

= Usually want an optimal goal
* Complete-state formulations
= |terative improvement algorithms

Hill Climbing

= Simple, general idea:
= Start wherever
= Always choose the best neighbor

* |[f no neighbors have better scores than
current, quit

= Why can this be a terrible idea?
= Complete?
= Optimal?

* What's good about it?

Hill Climbing Diagram

objectixe function

shoulder

N

m)I«obal maximum

local maximum

"flat" local maximum

»state space
current

state

= Random restarts?
* Random sideways steps?

10

Simulated Annealing

* |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
1, a "temperature” controlling prob. of downward steps

current «— MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do

T'— schedule[{]

if 7'= 0 then return current

next«—a randomly selected successor of current

AFE+«— VALUE[next] = VALUE[current]

if AE > 0 then current+ next

else current — next only with probability e® £/7

11

Simulated Annealing

= Theoretical guarantee: B(x)
= Stationary distribution: p(x) o e kT

* |f T decreased slowly enough,
will converge to optimal state!

* |s this an interesting guarantee?

= Sounds like magic, but reality is reality:

* The more downhill steps you need to escape, the less
likely you are to ever make them all in a row

* People think hard about ridge operators which let you
jump around the space in better ways

12

Beam Search

Like greedy hillclimbing search, but keep K
states at all times:
ENECHRNE CARN e
0 O

Greedy Search Beam Search

Variables: beam size, encourage diversity?
The best choice in MANY practical settings
Complete? Optimal?

Why do we still need optimal methods?

13

Genetic Algorithms

24748552 |24 31%
32752411i:%§t§%::
24415124 | 20 26%
32543213 11 14%

Fithess Selection

32752411

24@48552

>~

32752411

24415124

>~

Pairs

32748552

3274812

24752411

24752411

32752124

322124

24415411

Cross—-Over

2441541[7]

= Genetic algorithms use a natural selection metaphor
= |ike beam search (selection), but also have pairwise

crossover operators, with optional mutation

= Probably the most misunderstood, misapplied (and even
maligned) technique around!

|

Why does crossover make sense here?
When wouldn’t it make sense?

What would mutation be?

What would a good fitness function be?

15

	Slide 1
	A* Graph Search Gone Wrong?
	Consistency of Heuristics
	Slide 4
	Slide 5
	Slide 6
	Local Search Methods
	Types of Search Problems
	Hill Climbing
	Hill Climbing Diagram
	Simulated Annealing
	Slide 12
	Beam Search
	Genetic Algorithms
	Example: N-Queens

