Recap: Search

Search problem:

- States (configurations of the world)
- Transition function: a function from states and actions to lists of (state, cost) pairs; drawn as a graph
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
 This slide deck courtesy of Dan Klein at UC Berkeley

A* Graph Search Gone Wrong?

State space graph

A h=4 S h=1 h=2 3 В h=1 G h=0

Search tree

Consistency of Heuristics

- Stronger than admissibility
- Definition:

```
cost(A to C) + h(C) \ge h(A)

cost(A to C) \ge h(A) - h(C)

real cost \ge cost implied by heuristic
```

- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Optimality of A* Graph Search

Proof:

- New possible problem: some n on path to G* isn't in queue when we need it, because some worse n' for the same state dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor of n that was on the queue when n' was popped
- f(p) < f(n) because of consistency
- f(n) < f(n') because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and (estimates of) forward costs

 A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems

Local Search Methods

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve what you have until you can't make it better

 Generally much faster and more memory efficient (but incomplete)

Types of Search Problems

Planning problems:

- We want a path to a solution (examples?)
- Usually want an optimal path
- Incremental formulations

- We actually just want to know what the goal is (examples?)
- Usually want an optimal goal
- Complete-state formulations
- Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What's good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
              schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                         T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: $p(x) \propto e^{\frac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Beam Search

Like greedy hillclimbing search, but keep K states at all times:

Greedy Search

Beam Search

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?