Local Search Methods

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve what you have until you can't make it better

 Generally much faster and more memory efficient (but incomplete)

Types of Search Problems

Planning problems:

- We want a path to a solution (examples?)
- Usually want an optimal path
- Incremental formulations

• Identification problems:

- We actually just want to know what the goal is (examples?)
- Usually want an optimal goal
- Complete-state formulations
- Iterative improvement algorithms

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Continuous Problems

- Placing airports in Romania
 - States: (x₁,y₁,x₂,y₂,x₃,y₃)
 - Cost: sum of squared distances to closest city

Gradient Methods

- How to deal with continous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

$$x \leftarrow x + \alpha \nabla f(x)$$

What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

$$WA \neq NT$$

 $(WA, NT) \in \{(red, green), (red, blue), (green, red), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

```
\{WA = red, NT = green, Q = red, \\ NSW = green, V = red, SA = blue, T = green\}
```

Example: Cryptarithmetic

Variables (circles):

$$F T U W R O X_1 X_2 X_3$$

Domains:

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

• Constraints (boxes): all diff(F, T, U, W, R, O)

$$O + O = R + 10 \cdot X_1$$

• • •

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - **1**,2,...,9
- Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

Some Hard Questions...

- Who is liable if a robot driver has an accident?
- Will machines surpass human intelligence?
- What will we do with superintelligent machines?
- Would such machines have conscious existence? Rights?
- Can human minds exist indefinitely within machines (in principle)?