Game Playing State-of-the-Art

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue examined 200 million positions per second,
used very sophisticated evaluation and undisclosed methods for extending
some lines of search up to 40 ply. Current programs are even better, if less
historic.

Othello: Human champions refuse to compete against computers, which
are too good.

Go: Human champions are just beginning to be challenged by machines,
though the best humans still beat the best machines. In go, b > 300!
Classic programs use pattern knowledge bases, but big recent advances
using Monte Carlo (randomized) expansion methods.

Pacman: unknown
u W This slide deck courtesy of Dan Klein at UC Berkeley

GamesCrafters

GamesCrafters

games analysis members extra software

welcome The GamesCrafters research and development group was formed in 2001 as a "watering hole” to gather and engage top undergraduates as they explore the
Tertile area of computational game theory. At the core of the project is GAMESMAN, an open-source Al architecture developed for solving, playing, and
ames analyzing two-person abstract strategy games (e.g., Tic-Tac-Toe or Chess). Given the description of a game as input, our system generates a command-line
- interface and Tcl/Tk graphical application that will solve it (in the strong sense), and then play it perfectly. Programmers can easily prototype a new game with
analysis multiple rule variants, learn the strategy via color-coded value moves (win = go = green, fie = caution = yellow, lose = stop = red), and perform extended
members analysis.
exira The group is accessible to undergraduates at all levels. Those not yet ready to dive into code can create graphics, find bugs, or research the history of games
software for our website. Programmers can easily prototype a new game with multiple rule variants, design a fun interface, and perform extended analysis. Advanced

students are encouraged to tinker with the software core, and optimize the solvers, databases, hash functions, networking, user experience, efc.

Since this is not a class, but directed group study, students can re-register as often as they like; most stay for two or three semesters. This allows for a real
community to be formed, with veterans providing continuity and mentoring as project leads, as well as allowing for more ambitious multi-ferm projects. Our
alumni have told us how valuable this experience has been for them, providing them with a nurturing environment to mature as researchers, developers, and
leaders.

Over the past six years, over two hundred undergraduates have implemented more than sixty-five games and several advanced software engineering projects.
Our future research direction is *hunting big gam , implementing, solving, and analyzing large games whose perfect strategy is yet unknown.

This semester (Fall 2008), we're meeting in 606 Soda Hall, Mondays from 6-9PM. It is a "Directed Group Study" course worth two units led by Dr. Dan Garcia.

T

http://gamescrafters.berkeley.edu/

Adversarial Search

[DEMO: mystery
pacman]

Game Playing

= Many different kinds of games!

= AXxes:
= Deterministic or stochastic?
= One, two, or more players?

= Zero sum?
= Perfect information (can you see the state)?

= Want algorithms for calculating a strategy
(policy) which recommends a move in each state

Deterministic Games

= Many possible formalizations, one is:
= States: S (start at s,)
= Players: P={1...N} (usually take turns)
= Actions: A (may depend on player / state)
= Transition Function: SxA - S
* Terminal Test: S - {i,f}
= Terminal Utilities: SxP - R

= Solution for a player is a policy: S - A

Deterministic Single-Player?

Deterministic, single player,
perfect information:
= Know the rules
= Know what actions do
= Know when you win
= E.g. Freecell, 8-Puzzle, Rubik’s
cube
... It's just search!
Slight reinterpretation:
= Each node stores a value: the
best outcome it can reach
= This is the maximal outcome of
its children (the max value)
= Note that we don’t have path
sums as before (utilities at end)
After search, can pick move that

leads to best node

win

Adversarial Games

= Deterministic, zero-sum games: Minimax values:
computed recursively

= Tic-tac-toe, chess, checkers e ~N

. max
= One player maximizes result
* The other minimizes result
min
- /
= Minimax search: / \ / \
= A state-space search tree 7\ 7 .
* Players alternate turns 8 2 5 6 J
= Each node has.a minima?<l Terminal values:
value: best achievable utility part of the game

against a rational adversary

Computing Minimax Values

= Two recursive functions:
= max-value maxes the values of successors
= min-value mins the values of successors

def value(state):
If the state is a terminal state: return the state’s utility
If the next agent is MAX: return max-value(state)
If the next agent is MIN: return min-value(state)

def max-value(state):

Initialize max = -«

For each successor of state:
Compute value(successor)
Update max accordingly

Return max

Minimax Example

Tic-tac-toe Game Tree

MAX (X)
X X X
MIN (O) X X X
X X
X[o x[[o] [x
MAX (X) o
x[o[x| [x]o X|o
MIN (O) X X

0 X
TERMINAL O(X| |O
o) X

O x|

Utility -1

Minimax Properties

= Optimal against a perfect player. Otherwise?

= Time complexity?
n O(bm)

= Space complexity?
= O(bm)

10 10

= Forchess, b= 35 m= 100
= Exact solution is completely infeasible
= But, do we need to explore the whole tree?

max

min

9 100

[DEMO:
minVsExp n]j

11

Resource Limits

Cannot search to leaves

Depth-limited search
* |nstead, search a limited depth of tree

= Replace terminal utilities with an eval
function for non-terminal positions

Guarantee of optimal play is gone
More plies makes a BIG difference

Example:

= Suppose we have 100 seconds, can
explore 10K nodes / sec

= So can check 1M nodes per move

" o -B reaches about depth 8 — decent
chess program

max
min min
? ? ? ?

12

lterative Deepening

lterative deepening uses DFS as a subroutine:

3. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of
length 2)

4. If “1” failed, do a DFS which only searches paths
of length 2 or less.

5. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Why do we want to do this for multiplayer games?

Note: wrongness of eval functions matters less and
less the deeper the search goes!

13

Evaluation Functions

Function which scores non-terminals

Black to move White to move

White slightly better Black winning

|deal function: returns the utility of the position
In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ... + wnfn(s)

e.g. f,(s) = (num white queens — num black queens), etc.

14

Evaluation for Pacman

Eval(s) = w1 f1(s) +wafo(s) + ... + wnfn(s)

15

Why Pacman Starves

-3 -
/\
X

B
| /\
i -3 - - 3

He knows his score will go up by eating the dot now (west, east)
He knows his score will go up just as much by eating the dot later (east, west)

There are no point-scoring opportunities after eating the dot (within the
horizon, two here)

Therefore, waiting seems just as good as eating: he may go east, then back
west in the next round of replanning!

Minimax Example

17

	Game Playing State-of-the-Art
	GamesCrafters
	Adversarial Search
	Game Playing
	Deterministic Games
	Deterministic Single-Player?
	Adversarial Games
	Computing Minimax Values
	Minimax Example
	Tic-tac-toe Game Tree
	Minimax Properties
	Resource Limits
	Iterative Deepening
	Evaluation Functions
	Evaluation for Pacman
	Why Pacman Starves
	Slide 17

