Adversarial Search

This slide deck courtesy of Dan Klein at UC Berkeley

Game Playing

= Many different kinds of games!

= AXxes:
= Deterministic or stochastic?
= One, two, or more players?

= Zero sum?
= Perfect information (can you see the state)?

= Want algorithms for calculating a strategy
(policy) which recommends a move in each state

Minimax Example

Pruning in Minimax Search

Alpha-Beta Pruning

= (General configuration

= We're computing the MIN- MAX
VALUE at n
= We’'re looping over n’s children MIN

* n's value estimate is dropping

" ais the best value that MAX
can get at any choice point :
along the current path MAX

" |f nbecomes worse than a,
MAX will avoid it, so can stop MIN
considering n's other children

= Define b similarly for MIN

Alpha-Beta Pruning Example

a is MAX’s best alternative here or above
8 b is MIN’s best alternative here or above

Alpha-Beta Pruning Example

Starting alb pre Q‘

Raising a

Lowering b

a=-00

b=+00

Raising a a=-0

a g a is MAX’s best alternative here or above
=18

b is MIN’s best alternative here or above

Alpha-Beta Pseudocode

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
U — —00
for a, sin SUCCESSORS(state) do v+— MAX(v, MIN-VALUE(s))
return v

function MAX-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
v, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for a, sin SUCCESSORS(state) do b
v+ MAX(v, MIN-VALUE(S, o, 3))
if U@,@ then return v
a «— Max(a, v) .
return v

Alpha-Beta Pruning Properties

This pruning has no effect on final result at the root

Values of intermediate nodes might be wrong!
= |mportant: children of the root may have the wrong value

Good child ordering improves effectiveness of pruning

With “perfect ordering”:
= Time complexity drops to O(b™?)
* Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing
about what to compute)

a - Pruning Example

10

Multi-Agent Utilities

= Similar to
minimax:
= Terminals

have utility
tuples

* Node values
are also utility
tuples

= Each player
maximizes its
own utility

= Can give rise 1,66 [|71,2 (61,2721]| |517|[152 771|525

to cooperation
and
competition
dynamically...

12

Expectimax Search Trees

What if we don’t know what the

result of an action will be? E.g.,
* |n solitaire, next card is unknown
* |n minesweeper, mine locations max
* |n pacman, the ghosts act randomly

Can do expectimax search to

maximize average score
* Max nodes as in minimax search
= Chance nodes, like min nodes,
except the outcome is uncertain
= Calculate expected utilities 10! 110 9 100
= |.e.take weighted average
(expectation) of values of children

chance

Later, we’ll learn how to formalize
these underlying problems as

Markov Decision Processes
13

Reminder: Probabilities

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: traffic on freeway?
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

Some laws of probability (more later):
= Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:

= P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
= We’'ll talk about methods for reasoning and updating probabilities later

14

Reminder: Expectations

* We can define function f(X) of a random variable X

* The expected value of a function is its average value,
weighted by the probability distribution over inputs

= Example: How long to get to the airport?

= | ength of driving time as a function of traffic:
L(none) = 20, L(light) = 30, L(heavy) = 60
= What is my expected driving time?
= Notation: E[L(T)]
* Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

= E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)

= E[L(T)]=(20*0.25) + (30 * 0.5) + (60 * 0.25) = 35

15

Expectimax Example

A

12

15

16

Expectimax Pseudocode

def value(s)
if s is @ max node return maxValue(s)
if s is an exp node return expValue(s) E]
if s is a terminal node return evaluation(s)

def maxValue(s)
values = [value(s’) for s’ in successors(s)]
return max(values)

def expValue(s)
values = [value(s’) for s’ in successors(s)]
weights = [probability(s, s’) for s’ in successors(s)]
return expectation(values, weights)

17

Expectimax Pruning?

A

12 9 2 4

Depth-Limited Expectimax

A E]
- »
o
e
O
]
3
2 O 0
v Estimate of true)

400! [300 expectimax value
YN (which would
(2 require a lot of

work to compute)/

492 362

What Utilities to Use?

= For minimax, terminal function scale doesn’t matter

= We just want better states to have higher evaluations
(get the ordering right)

= We call this insensitivity to monotonic transformations

= For expectimax, we need magnitudes to be meaningful

0 || 40 20 | | 30 . x? » | 0 |[1600| 400 |900

What Probabilities to Use?

In expectimax search, we have
a probabilistic model of how the
opponent (or environment) will
behave in any state

= Model could be a simple
uniform distribution (roll a die)

= Model could be sophisticated
and require a great deal of
computation

= We have a node for every
outcome out of our control:
opponent or environment

= The model might say that
adversarial actions are likely!
For now, assume for any state
we magically have a distribution
to assign probabilities to
opponent actions / environment
outcomes

Having a probabilistic belief about
an agent’s action does not mean
that agent is flipping any coins! o1

Expectimax for Pacman

Notice that we've gotten away from thinking that the
ghosts are trying to minimize pacman’s score

Instead, they are now a part of the environment
Pacman has a belief (distribution) over how they will act
Quiz: Can we see minimax as a special case of
expectimax?

Quiz: what would pacman’s computation look like if we
assumed that the ghosts were doing 1-ply minimax and
taking the result 80% of the time, otherwise moving
randomly?

If you take this further, you end up calculating belief
distributions over your opponents’ belief distributions
over your belief distributions, etc...

= Can get unmanageable very quickly!

22

World Asssumptions

Results from playing 5 games

Random
Ghost

Won 5/5 Won 5/5

Minimax
Pacman Avg. Score: Avg. Score:
483 493
Won 1/5 Won 5/5
Expectimax
Pacman Avg. Score: Avg. Score:

-303 503

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Mixed Layer Types

= E.g. Backgammon

MAX
= Expectiminimax
* Environment is an extra
player that moves after CHANCE
each agent
* Chance nodes take i

expectations, otherwise
like minimax

ExpectiMinimax-Value(state):
if state is a MAX node then
return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a MIN node then
return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then
return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Stochastic Two-Player

= Dice rolls increase b: 21 possible rolls
with 2 dice

= Backgammon = 20 legal moves

0 1 2 3 4 5 6 7 8 9 1011 12
[Y,

= Depth2=20x (21 x20)*=1.2x10°
= As depth increases, probability of
reaching a given search node shrinks
= So usefulness of search is diminished
= So limiting depth is less damaging
= But pruning is trickier...
= TDGammon uses depth-2 search +
very good evaluation function +

reinforcement learning:
world-champion level play

= st Al world champion in any game!

25 24 23 22 21 20 19 18 17 16 15 14 13

Maximum Expected Utility

= Why should we average utilities? Why not minimax?

= Principle of maximum expected utility:

= A rational agent should chose the action which maximizes its
expected utility, given its knowledge

= Questions:
= Where do utilities come from?
= How do we know such utilities even exist?
= Why are we taking expectations of utilities (not, e.g. minimax)?
= What if our behavior can’t be described by utilities?

26

What's Next?

= Make sure you know what:
* Probabilities are
= Expectations are

= Next topics:
= Dealing with uncertainty
* How to learn evaluation functions
* Markov Decision Processes

27

Deterministic Two-Player

= E.g. tic-tac-toe, chess,
checkers
= Zero-sum games
= One player maximizes result
* The other minimizes result
= Minimax search
= A state-space search tree
* Players alternate

= Each layer, or ply, consists of
a round of moves™®

= Choose move to position with
highest minimax value = best
achievable utility against best

play

max

min

* Slightly different from
the book definition

28

Minimax Example

29

Minimax Search

function MAX-VALUE(stale) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for a, sin SUCCESSORS(state) do v+ Max(v, MIN-VALUE(S))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
U 00
for a, sin SUCCESSORS(state) do v+ MIN(v, MAX-VALUE(s))
return v

30

What is Search For?

" Models of the world: single agents, deterministic actions,
fully observed state, discrete state space

" Planning: sequences of actions
" The path to the goal is the important thing
" Paths have various costs, depths
" Heuristics to guide, fringe to keep backups

" |dentification: assignments to variables
" The goal itself is important, not the path

" All paths at the same depth (for some formulations)
" CSPs are specialized for identification problems

Constraint Satisfaction Problems

= Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test: any function over states
= Successor function can be anything

= (Constraint satisfaction problems (CSPs):
= A special subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying
allowable combinations of values for subsets of
variables

= Simple example of a formal representation
language

Tasmania

= Allows useful general-purpose algorithms with
more power than standard search algorithms

Example: N-Queens

" Formulation 1:
" Variables: i
* Domains: 10-1}
" Constraints
Vi, g, k (XZ]7 X’L—I—k,j—k) S {(07 0)7 (07 1)7 (17 O)}

2 Xij =N
i

Example: N-Queens

" Formulation 2: Q1
" Variables: @k @2
@3

Q4
. 1’2, 3, o o .N
" Domains: { }

" Constraints:
Implicit: Vi,j non-threatening(Q;, Q;)
Or

Explicit: (QlaQQ) < {(173>7(174>7}

Example: Map-Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domain: D = {red, green, blue}

Constraints: adjacent regions must have
different colors

les

[)
= w

(WA,NT) € {(red, green), (red, blue), (green, red), ...} Taskighh

WA#NT

Solutions are assignments satisfying all
constraints, e.g.:

{WA =red, NT = green,Q = red,
NSW = green,V = red, SA = blue, T’ = green}

Constraint Graphs

" Binary CSP: each constraint
relates (at most) two variables

" Binary constraint graph: nodes @%

are variables, arcs show
constraints o

= General-purpose CSP @
algorithms use the graph
structure to speed up search.
E.g., Tasmania is an
Independent subproblem!

Example: Cryptarithmetic

" Variables (circles): T WO
FTUWRO X1 Xo X3 + T WO
" Domains: FOUR

{0,1,2,3,4,5,6,7,8,9}

" Constraints (boxes):
alldiff(F, T, U, W, R, O) u) (W

O—|—O:R—|—1O°X1

Example: Sudoku

§ = s> " Variables:
34 16~ 7 " Each (open) square
5 11717 " Domains:
1 3 B 9 " {1,2,,9}
6 8 4 3 " Constraints:
2 ol L 9-way alldiff for each column
I 2
7|8 ar / 9-way alldiff for each row
Z 3 / 9-way alldiff for each region

Example: Boolean Satisfiability

" Given a Boolean expression, is it satisfiable?
" Very basic problem in computer science

p1 A (p2 — p3) A ((—p1 A —p3) — —p2) A (p1 V P3)

" Turns out you can always express in 3-CNF

(p1) A(=p2Vp3)A(p1VpP3V-p2)A(p1VporVp3)

" 3-SAT: find a satisfying truth assignment

Example: 3-SAT

= Variables:
" Domains:
" Constraints:

P1,P2,---Pn

{true, false}

pi V Pj V Dk
—p;r V p;r V D/

pin VvV P V Pk

Implicitly
conjoined (all
clauses must
be satisfied)

Varieties of CSPs

" Discrete Variables
" Finite domains
" Size d means O(d") complete assignments
" E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
" Infinite domains (integers, strings, etc.)
" E.g., job scheduling, variables are start/end times for each job
* Linear constraints solvable, nonlinear undecidable

" Continuous variables
" E.g., start/end times for Hubble Telescope observations
" Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

" Varieties of Constraints
" Unary constraints involve a single variable (equiv. to shrinking domains):

SA #*= green

" Binary constraints involve pairs of variables:

SA £ WA

" Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

" Preferences (soft constraints):
" E.g., redis better than green
" Often representable by a cost for each variable assignment
" Gives constrained optimization problems
= (We'llignore these until we get to Bayes’ nets)

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when
and where?

Hardware configuration
Transportation scheduling
Factory scheduling
Floorplanning

Fault diagnosis

... lots more!

Many real-world problems involve real-valued
variables...

Backtracking Example

S

—]

o &L

/\

.

A/\

¢<r

Improving Backtracking

" General-purpose ideas can give huge gains in
speed:
" Which variable should be assigned next?
" In what order should its values be tried?
" Can we detect inevitable failure early?
" Can we take advantage of problem structure?

Summary

CSPs are a special kind of search problem:
= States defined by values of a fixed set of variables
= (Goal test defined by constraints on variable values

Backtracking = depth-first search with incremental constraint checks
Ordering: variable and value choice heuristics help significantly

Filtering: forward checking, arc consistency prevent assignments that
guarantee later failure

Structure: Disconnected and tree-structured CSPs are efficient

lterative improvement: min-conflicts is usually effective in practice

Some Hard Questions...

Who is liable if a robot driver has an accident?
Will machines surpass human intelligence?
What will we do with superintelligent machines?

Would such machines have conscious
existence? Rights?

Can human minds exist indefinitely within
machines (in principle)?

	Adversarial Search
	Game Playing
	Slide 3
	Pruning in Minimax Search
	Alpha-Beta Pruning
	Alpha-Beta Pruning Example
	Slide 7
	Alpha-Beta Pseudocode
	Alpha-Beta Pruning Properties
	- Pruning Example
	Multi-Agent Utilities
	Slide 12
	Expectimax Search Trees
	Reminder: Probabilities
	Reminder: Expectations
	Expectimax Example
	Expectimax Pseudocode
	Expectimax Pruning?
	Depth-Limited Expectimax
	What Utilities to Use?
	What Probabilities to Use?
	Expectimax for Pacman
	World Asssumptions
	Mixed Layer Types
	Slide 25
	Maximum Expected Utility
	What’s Next?
	Deterministic Two-Player
	Slide 29
	Minimax Search
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Summary
	Slide 47

