CS343 Artificial Intelligence

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Good Afternoon, Colleagues

Are there any questions?

 Next week's readings: utility theory, sequential decision problems

- Next week's readings: utility theory, sequential decision problems
- Mike Mauk talk on Friday

- Next week's readings: utility theory, sequential decision problems
- Mike Mauk talk on Friday
- Multiagent assignment questions?

- Next week's readings: utility theory, sequential decision problems
- Mike Mauk talk on Friday
- Multiagent assignment questions?
- Pair programming

- Next week's readings: utility theory, sequential decision problems
- Mike Mauk talk on Friday
- Multiagent assignment questions?
- Pair programming
- Use piazza

• Last year – Mean: 14, stdev: 4.55

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998;

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998; Sarah Lui 7494;

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998; Sarah Lui 7494; George Kraft 1133(!)

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998; Sarah Lui 7494; George Kraft 1133(!)
- Contest
 - Shun Zhang: 344 (14.74 s)

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998; Sarah Lui 7494; George Kraft 1133(!)
- Contest
 - Shun Zhang: 344 (14.74 s)
 - Sarah Lui: 318 (12.07 s)

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998; Sarah Lui 7494; George Kraft 1133(!)
- Contest
 - Shun Zhang: 344 (14.74 s)
 - Sarah Lui: 318 (12.07 s)
 - Chris Cotter: 304 (4.65 s)

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998; Sarah Lui 7494; George Kraft 1133(!)
- Contest
 - Shun Zhang: 344 (14.74 s)
 - Sarah Lui: 318 (12.07 s)
 - Chris Cotter: 304 (4.65 s)
 - George Kraft* 282 (1.23 s)

- Last year Mean: 14, stdev: 4.55
- Question 6 David Lee, Michael Teng, Tony Llongueras, August Shi, Robby Nevels: around 690 nodes
- Question 7 Riley Lynch 7998; Sarah Lui 7494; George Kraft 1133(!)
- Contest
 - Shun Zhang: 344 (14.74 s)
 - Sarah Lui: 318 (12.07 s)
 - Chris Cotter: 304 (4.65 s)
 - George Kraft* 282 (1.23 s)*used a GA

• I'll draw a ball from an urn with 3 black balls and 1 red

- I'll draw a ball from an urn with 3 black balls and 1 red
- Player one: set the odds

- I'll draw a ball from an urn with 3 black balls and 1 red
- Player one: set the odds
 - A bet of \$x on black wins an extra \$y, a bet of \$y on red wins an extra \$x.
 - Constraint: x and y sum to 10

- I'll draw a ball from an urn with 3 black balls and 1 red
- Player one: set the odds
 - A bet of \$x on black wins an extra \$y, a bet of \$y on red wins an extra \$x.
 - Constraint: x and y sum to 10
- Player two: bet

- I'll draw a ball from an urn with 3 black balls and 1 red
- Player one: set the odds
 - A bet of \$x on black wins an extra \$y, a bet of \$y on red wins an extra \$x.
 - Constraint: x and y sum to 10
- Player two: bet
- Now change it to 2 black balls and 1 red

- I'll draw a ball from an urn with 3 black balls and 1 red
- Player one: set the odds
 - A bet of \$x on black wins an extra \$y, a bet of \$y on red wins an extra \$x.
 - Constraint: x and y sum to 10
- Player two: bet
- Now change it to 2 black balls and 1 red
 - Player two: what do you do differently?

- I'll draw a ball from an urn with 3 black balls and 1 red
- Player one: set the odds
 - A bet of \$x on black wins an extra \$y, a bet of \$y on red wins an extra \$x.
 - Constraint: x and y sum to 10
- Player two: bet
- Now change it to 2 black balls and 1 red
 - Player two: what do you do differently?
 - Player one: what would you have done differently?

- I'll draw a ball from an urn with 3 black balls and 1 red
- Player one: set the odds
 - A bet of \$x on black wins an extra \$y, a bet of \$y on red wins an extra \$x.
 - Constraint: x and y sum to 10
- Player two: bet
- Now change it to 2 black balls and 1 red
 - Player two: what do you do differently?
 - Player one: what would you have done differently?
- De Finetti's theorem