Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Probabilistic Models

 A probabilistic model is a joint distribution over a set of variables

$$P(X_1, X_2, \dots X_n)$$

- Inference: given a joint distribution, we can reason about unobserved variables given observations (evidence)
- General form of a query:

Stuff you care about
$$P(X_q|x_{e_1}, \dots x_{e_k})$$
 Stuff you already know

 This conditional distribution is called a posterior distribution or the belief function of an agent which uses this model

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Conditional Probabilities

- Conditional probabilities:
 - E.g., P(cavity | toothache) = 0.8
 - Given that toothache is all I know...
- Notation for conditional distributions:
 - P(cavity | toothache) = a single number
 - P(Cavity, Toothache) = 2x2 table summing to 1
 - P(Cavity | Toothache) = Two 2-element distributions over Cavity, each summing to 1
- If we know more:
 - P(cavity | toothache, catch) = 0.9
 - P(cavity | toothache, cavity) = 1
- Note: the less specific belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification:
 - P(cavity | toothache, traffic) = P(cavity | toothache) = 0.8
- This kind of inference, guided by domain knowledge, is crucial

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \qquad P(x,y) = P(x|y)P(y)$$

Example:

R	Р
sun	8.0
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D,W)

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Why is this always true?

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later
- In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$

- Example:

m is meningitis, s is stiff neck
$$P(s|m) = 0.8 \\ P(m) = 0.0001 \\ P(s) = 0.1$$
 Example givens

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1

$$P(g|r) \propto P(r|g)P(g)$$

Model for Ghostbusters

 Reminder: ghost is hidden, sensors are noisy

T: Top sensor is red

B: Bottom sensor is red

G: Ghost is in the top

• Queries:

$$P(+g) = ??$$
 $P(+g \mid +t) = ??$
 $P(+g \mid +t, -b) = ??$

 Problem: joint distribution too large / complex

Joint Distribution

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	¬g	0.16
+t	¬b	+g	0.24
+t	¬b	g	0.04
–t	+b	+g	0.04
–t	+b	¬g	0.24
–t		+g	0.06
⊸t	⊸b	¬g	0.06

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

$$X \perp \!\!\! \perp Y$$

- We write:
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence

N fair, independent coin flips:

Example: Independence?

$P_{\scriptscriptstyle ullet}$	T	W)
<i>•</i> 1	$(\bot,$	vvj

Т	W	Р
warm	sun	0.4
warm	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
warm	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

$P_2(T,W)$

Т	W	Р
warm	sun	0.3
warm	rain	0.2
cold	sun	0.3
cold	rain	0.2

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, ¬cavity) = P(+catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$\forall x, y, z : P(x,y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z,y) = P(x|z)$$

$$X \perp \!\!\!\perp Y|Z$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
- What about fire, smoke, alarm?

The Chain Rule

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

Trivial decomposition:

```
P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =
P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})
```

With assumption of conditional independence:

```
P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =
P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})
```

 Bayes' nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 - B: Bottom square is red
 - G: Ghost is in the top
- Givens:

$$P(+g) = 0.5$$

 $P(+t \mid +g) = 0.8$
 $P(+t \mid \neg g) = 0.4$
 $P(+b \mid +g) = 0.4$
 $P(+b \mid \neg g) = 0.8$

P(T,B,G) = P(G) P(T|G) P(B|G)

Т	В	G	P(T,B,G)
+t	+b	+ g	0.16
+t	+b	g 	0.16
+t	¬b	+g	0.24
+t		ا ق	0.04
−t	+ b	+g	0.04
_t	+b	Ŋ	0.24
−t	¬b	+g	0.06
—t	¬b	¬g	0.06

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

N independent coin flips

Example: Coin Flips

■ No(interactions, between variables; absolute independence

Example: Coin Flips

$$P(h, h, t, h) =$$

Example: Coins

 Extra arcs don't prevent representing independence, just allow non-independence

$P(X_1)$	
h	0.5
t	0.5

$$P(X_2)$$
h 0.5
t 0.5

$$P(X_1)$$
h 0.5
t 0.5

$$P(X_2|X_1)$$
 $\begin{array}{|c|c|c|c|}\hline h & 0.5 \\ t & 0.5 \\ \hline \end{array}$

 Adding unneeded arcs isn't wrong, it's just inefficient

h t	0.5
t t	0.5

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic II

Let's build a causal graphical model

Variables

- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

$$P(X|A_1\ldots A_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example: $P(+cavity, +catch, \neg toothache)$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Traffic

Example: Alarm Network

Α	7	P(J A)
+a	+j	0.9
+a	<u> </u>	0.1
¬a	+j	0.05
−a	−j	0.95

A	M	P(M A)
+a	+m	0.7
+a	−m	0.3
–a	+m	0.01
−a	⊸m	0.99

Е	P(E)
+e	0.002
− е	0.998

В	Ε	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	−a	0.05
+b	¬e	+a	0.94
+b	¬e	¬a	0.06
⊸b	+e	+a	0.29
⊣b	+e	−a	0.71
⊸b	⊸е	+a	0.001
⊸b	⊸е	−a	0.999

Example: Traffic

Causal direction

1 (1,10)				
r	t	3/16		
r	−t	1/16		
ŗ	t	6/16		
-r	–t	6/16		

P(T|R)

Example: Reverse Traffic

Reverse causality?

$I_{-}(I_{-},IU_{-})$				
r	t	3/16		
r	−t	1/16		
<u> </u>	t	6/16		
⊸r	–t	6/16		

D(T P)

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence