Probabilistic Models

* Models describe how (a portion of) the world works

* Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown variables,
given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)

= Example: value of information ’

This slide deck courtesy of Dan Klein at UC Berkeley



Probabilistic Models

= A probabilistic model is a joint distribution over a set of
variables

P(X1,Xo,...Xn)

= Inference: given a joint distribution, we can reason about
unobserved variables given observations (evidence)

= General form of a query:

Stuff you A x_ Stuff you
care about already know

= This conditional distribution is called a posterior
distribution or the the belief function of an agent which

. 2
uses this model



Probabilistic Inference

= Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
" These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Qbserving new evidence causes beliefs to be updated



Conditional Probabilities

Conditional probabilities:
= E.g., P(cavity | toothache) = 0.8
* QGiven that toothache is all | know...

Notation for conditional distributions:
» P(cavity | toothache) = a single number
= P(Cavity, Toothache) = 2x2 table summing to 1

= P(Cavity | Toothache) = Two 2-element distributions over Cavity, each summing
to 1

If we know more:
= P(cavity | toothache, catch) = 0.9
= P(cavity | toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives, but
IS not always useful

New evidence may be irrelevant, allowing simplification:
* P(cavity | toothache, traffic) = P(cavity | toothache) = 0.8
This kind of inference. auided bv domain knowledae. is crucial



The Product Rule

= Sometimes have conditional distributions but want the joint

Paly) = 28V oy P(a,y) = P(aly)P(y)

P(y)
= Example:
P(D|W) P(D,W)
P(W) D W P D W P
R D wet sun 0.1 wet sun 0.08
<un | 08 dry | sun | 0.9 <‘,:> dry | sun | 0.72
. wet rain 0.7 wet rain 0.14
rain 0.2
dry rain | 0.3 dry rain | 0.06




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(z1,z2,23) = P(z1)P(22|x1) P (3|21, 22)

P(z1,22,...2n) = || P(zilzy ... 2i—1)
)

= Why is this always true?



Bayes' Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x) %my rule! |

» Dividing, we get: PPl T8

PGaly) = 50 P(a)

= Why is this at all helpful?
= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later

* |n the running for most important Al equation! 7


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(Effect|Cause) P(Cause)

P(Cause|Effect) = P(Effect)

= Example:
" mis meningitis, s is stiff neck P(sjm) = 0.8
P(m) — 0.0001 L+ E.xample
givens
P(s) =0.1

i

_ P(sjm)P(m) _ 0.8 x 0.0001

= 0.0008
P(s) 0.1

P(ms)

* Note: posterior probability of meningitis still very small
* Note: you should still get stiff necks checked out! Why?



Ghostbusters, Revisited

= |et’s say we have two distributions:
= Prior distribution over ghost location: P(G) | | |
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do

= R = reading color measured at (1,1)
= E.g. P(R = yellow | G=(1,1)) = 0.1

= We can calculate the posterior
distribution P(G|r) over ghost locations

given a reading using Bayes' rule: n
P(glr) o< P(r|g)P(g) .n.

<0.01 0.17
9




Model for Ghostbusters

* Reminder: ghost is hidden,
Sensors are noisy

= T: Top sensor is red
B: Bottom sensor is red
G: Ghost is in the top

= Queries:
P(+g) = ?7?
P(+g | +t) = ??
P(+g | +t, -b) = ??

= Problem: joint
distribution too
large / complex

Joint Distribution

B G P(T,B,G)
+t| +b| +g| 0.16
+t| +b| -g| 0.16
+t| -b| +g| 0.24
+t| -b| -g| 0.04
-t| +b| +g| 0.04
-t| +b| -g| 0.24
-t -b| +g| 0.06
-t| -b| -g| 0.06




Independence

= Two variables are independent if:
Va,y : P(z,y) = P(z)P(y)

* This says that their joint distribution factors into a product two
simpler distributions

= Another form:
Vz,y : P(z|y) = P(x)

X1Y

= We write:

* |ndependence is a simplifying modeling assumption
* Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity,
Toothachel?

11



Example: Independence

= N fair, independent coin flips:

P(X1) P(X5) P(Xn)
h ] 05 h |05 o h |05
t |05 t |05 t |05
“_ U
S

P(X1,Xo,...Xn)

2" —

\




Example: Independence?

Pi(T,W)

T W P
warm | sun | 0.4
warm | rain | 0.1
cold sun | 0.2
cold rain | 0.3

P>(T, W)
T W P
warm | sun | 0.3
warm | rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
warm | 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 0.4

13



Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, —cavity) = P(+catch| ~cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily 14



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Va,y,z 1 P(z,ylz) = P(z[2)P(y|z)

XY\ Z
Va,y,z . P(x|z,y) = P(z|z) ’

= What about this domain:
» Traffic
= Umbrella
= Raining

= \What about fire, smoke, alarm?
15



The Chain Rule

P(X1,Xo,...Xn) = P(X1)P(X5|X1)P(X3|X1, X5)...

Trivial decomposition:
P(Traffic, Rain, Umbrella) =

P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

With assumption of conditional independence:
P(Traffic, Rain, Umbrella) =

P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

Bayes’ nets / graphical models help us express conditional
independence assumptions 10



Ghostbusters Chain Rule

= Each sensor depends only
on where the ghost is

P(T,B,G) = P(G) P(T|G) P(B|G)

= That means, the two sensors are
conditionally independent, given the T B G P(T,B,G)

host iti
ghost position +| +b| +g| 0.16
= T:Top square is red +t| +b| -g| 0.16
B: Bottom square is red
G: Ghost is in the top +t| -b| +g| 0.24
| +t| -b| -g| 0.04
= @Givens:
(+g) 0.5 —t +b +J 0.04
P(+t |+9)=038 -t| +b| -g| 0.24
P( —J ) =04
P(+b|+g)=0.4 -t| =b +J 0.06
P(+b|-g)=0.8
(+01-0) ~t| -b| -g| 0.06




Bayes' Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to

represent explicitly

= Hard to learn (estimate) anything empirically about more than a

few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

More properly called graphical models
We describe how variables locally interact

Local interactions chain together to give global, indirect
interactions

For about 10 min, we’ll be vague about how these interactions
are specified 18



Example Bayes' Net: Insurance

19



Example Bayes’ Net: Car

batterv age alternator fanbelt
broke

aten

battery fuel line starter
meter flat hlocked broke
Comw ) Com) Gomss) QD) Covon




Graphical Model Notation

Nodes: variables (with domains)
= Can be assigned (observed) or
unassigned (unobserved)

Arcs: interactions

= Similar to GSP constraints
" Indicate “direct influence” between @

variables
Toothache @

= Formally: encode conditional
independence (more later)
21

For now: imagine that arrows
mean direct causation (in
general, they don’t!)



* N independent coin flips

Example: Coin Flips

o No actic etween varlablex
elndeoendence

22



Example: Coin Flips

P(X1) P(X52) P(Xn)
h ] 05 h |05 h |05
t | 05 t |05 t | o5
P(h,h,t,h) =

Only distributions whose variables are absolutely independent
can be represented by a Bayes’ net with no arcs. 23



Example: Coins

= Extra arcs don't prevent representing
iIndependence, just allow non-independence

OO

P(X1) P(X>) P(X1)  P(Xo[Xq)

h 0.5 h 0.5 h 0.5 h|ih | 0.5

t 0.5 t 0.5 t 0.5 t|h | 0.5

| | h|t | 0.5

" Adding unneeded arcs isn't tit | 05

wrong, it's just inefficient



Example: Traffic

= Variables:
= R: It rains
= T: There is traffic

* Model 1: independence
= Model 2: rain causes traffic

= Why is an agent using model 2 better?

25



Example: Traffic Il

= | et’s build a causal graphical model

= Variables

T: Traffic

R: It rains

L: Low pressure
D: Roof drips

B: Ballgame

C: Cavity

26



Example: Alarm Network

= Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J: John calls
= E: Earthquake!

27



Bayes' Net Semantics

Let’s formalize the semantics of a
Bayes' net

A set of nodes, one per variable X

A directed, acyclic graph

A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values

P(X|aq1...an)

= CPT: conditional probability table
= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities 28



Toothache @

= Bayes' nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

Probabilities in BNs

mn
P(z1,x2,...zn) = || P(x;|parents(X;))
i=1
= Example:
P(+cavity, +catch, —~toothache)

= This lets us reconstruct any entry of the full joint

= Not every BN can represent every joint distribution
* The topology enforces certain conditional independencies 29



Example: Traffic

P(R)

+r

1/4

mlf

3/4

P(T|R)

+r—

+1

3/4

ml!

1/4

=f—»

+1

1/2

ml!

1/2

P(+r,—t) =

30



Example: Alarm Network

-e |0.998

~b |0.999
l B E A PABE

+b |[+e [ +a |0.95

B P(B) E P(E)
+b | 0.001 Burglary @ +e |0.002

+b | +e |-a [0.05

+b |-e |+a [0.94

+a |+ |0.9 +a |+m | 0.7 -b |+e |+a |0.29
+a |- |0.1 +a |-m [0.3 -b [+e |-a |0.71
-a [+ |0.05 -a |[+m |0.01 -b |-e |+a |0.001
-a |1 |0.95 -a |—-m |0.99 -b |-e |-a [0.999




Example: Traffic

= Causal direction

P(R)

r

1/4

mlf

3/4

P(T|R)

r

t

3/4

ml!

1/4

t

1/2

ml!

1/2

32



Example: Reverse Traffic

= Reverse causality?

r

1/7

il

6/7

P(T) P(T, R)
t 16 r t 3/16
"t | 776 r | -t | 1/16
P(R|T) —-r t 6/16
—r -t 6/16
t r 1/3
e Aaf 2/3

33



Causality?

* When Bayes’ nets reflect the true causal patterns:
= QOften simpler (nodes have fewer parents)
= QOften easier to think about
= QOften easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain (especially if
variables are missing)

* E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology really encodes conditional independence

34
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