Bayes’ Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified
Bayes’ Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

This slide deck courtesy of Dan Klein
Bayes’ Net Semantics

- Let’s formalize the semantics of a Bayes’ net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]

 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- Example:
 \[P(+\text{cavity}, +\text{catch}, -\text{toothache}) \]

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies
Example: Traffic

\[P(R) \]

<table>
<thead>
<tr>
<th></th>
<th>+r</th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>3/4</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T|R) \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>+t</th>
<th>3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+t</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

\[P(\neg r, \neg t) = \]

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+t</td>
<td>1/2</td>
</tr>
<tr>
<td>\neg t</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>¬b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>¬e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|-----|-----|------|
| +a | +j | 0.9 |
| +a | ¬j | 0.1 |
| ¬a | +j | 0.05 |
| ¬a | ¬j | 0.95 |

| A | M | P(M|A) |
|-----|-----|------|
| +a | +m | 0.7 |
| +a | ¬m | 0.3 |
| ¬a | +m | 0.01 |
| ¬a | ¬m | 0.99 |

| B | E | A | P(A|B,E) |
|-----|-----|-----|---------|
| +b | +e | +a | 0.95 |
| +b | +e | ¬a | 0.05 |
| +b | ¬e | +a | 0.94 |
| ¬b | +e | +a | 0.29 |
| ¬b | +e | ¬a | 0.71 |
| ¬b | ¬e | +a | 0.001 |
| ¬b | ¬e | ¬a | 0.999 |
Example: Independence

- For this graph, you can fiddle with θ (the CPTs) all you want, but you won’t be able to represent any distribution in which the flips are dependent!

<table>
<thead>
<tr>
<th>$P(X_1)$</th>
<th>$P(X_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h 0.5</td>
<td>h 0.5</td>
</tr>
<tr>
<td>t 0.5</td>
<td>t 0.5</td>
</tr>
</tbody>
</table>
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.
When Bayes’ nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts

BNs need not actually be causal
- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation

What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence
Example: Traffic

- Causal direction

\[
P(R)
\]

\[
\begin{array}{c|c}
 r & 1/4 \\
 \neg r & 3/4 \\
\end{array}
\]

\[
P(T|R)
\]

\[
\begin{array}{c|c|c}
 r & t & 3/4 \\
 r & \neg t & 1/4 \\
 \neg r & t & 1/2 \\
 \neg r & \neg t & 1/2 \\
\end{array}
\]

\[
P(T, R)
\]

\[
\begin{array}{c|c|c}
 r & t & 3/16 \\
 r & \neg t & 1/16 \\
 \neg r & t & 6/16 \\
 \neg r & \neg t & 6/16 \\
\end{array}
\]

\[
\text{Example: Traffic}
\]

- Causal direction

\[
P(R)
\]

\[
\begin{array}{c|c}
 r & 1/4 \\
 \neg r & 3/4 \\
\end{array}
\]

\[
P(T|R)
\]

\[
\begin{array}{c|c|c}
 r & t & 3/4 \\
 r & \neg t & 1/4 \\
 \neg r & t & 1/2 \\
 \neg r & \neg t & 1/2 \\
\end{array}
\]

\[
P(T, R)
\]

\[
\begin{array}{c|c|c}
 r & t & 3/16 \\
 r & \neg t & 1/16 \\
 \neg r & t & 6/16 \\
 \neg r & \neg t & 6/16 \\
\end{array}
\]
Example: Reverse Traffic

- Reverse causality?

\[
\begin{array}{|c|c|}
\hline
T & P(T) \\
\hline
\text{t} & 9/16 \\
\text{\neg t} & 7/16 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
R & P(R|T) \\
\hline
\text{t} & \text{r} & 1/3 \\
\text{\neg r} & 2/3 \\
\hline
\text{\neg t} & \text{r} & 1/7 \\
\text{\neg r} & 6/7 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
P(T, R) & r & t & 3/16 \\
\text{r} & \text{\neg t} & 1/16 \\
\text{\neg r} & t & 6/16 \\
\text{\neg r} & \text{\neg t} & 6/16 \\
\hline
\end{array}
\]
Changing Bayes’ Net Structure

- The same joint distribution can be encoded in many different Bayes’ nets
 - Causal structure tends to be the simplest

- Analysis question: given some edges, what other edges do you need to add?
 - One answer: fully connect the graph
 - Better answer: don’t make any false conditional independence assumptions
Example: Alternate Alarm

If we reverse the edges, we make different conditional independence assumptions.

To capture the same joint distribution, we have to add more edges to the graph.
Bayes’ Nets

- So far: how a Bayes’ net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Today: assembled BNs using an intuitive notion of conditional independence as causality
 - Next: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)
Example: Naïve Bayes

- Imagine we have one cause y and several effects x:

$$P(y, x_1, x_2 \ldots x_n) = P(y)P(x_1|y)P(x_2|y) \ldots P(x_n|y)$$

- This is a naïve Bayes model
- We’ll use these for classification later
Example: Alarm Network

\[
P(b, e, \neg a, j, m) =
\]
The Chain Rule

- Can always factor any joint distribution as an incremental product of conditional distributions

\[P(X_1, X_2, \ldots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots \]

\[P(X_1, X_2, \ldots X_n) = \prod_{i} P(X_i|X_1 \ldots X_{i-1}) \]

- Why is the chain rule true?

- This actually claims nothing…

- What are the sizes of the tables we supply?
Example: Alarm Network

\[\prod_{i} P(X_i | \text{Parents}(X_i)) = P(B) \cdot P(E) \cdot P(A | B, E) \cdot P(J | A) \cdot P(M | A) \]
Bayes’ Net Semantics

- Let’s formalize the semantics of a Bayes’ net

- A set of nodes, one per variable X

- A directed, acyclic graph

- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]

- CPT: conditional probability table
- Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>−b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>−e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|---|---|------|
| +a | +j | 0.9 |
| +a | −j | 0.1 |
| −a | +j | 0.05 |
| −a | −j | 0.95 |

| A | M | P(M|A) |
|---|---|------|
| +a | +m | 0.7 |
| +a | −m | 0.3 |
| −a | +m | 0.01 |
| −a | −m | 0.99 |

| B | E | A | P(A|B,E) |
|---|---|---|---------|
| +b | +e | +a | 0.95 |
| +b | +e | −a | 0.05 |
| +b | −e | +a | 0.94 |
| +b | −e | −a | 0.06 |
| −b | +e | +a | 0.29 |
| −b | +e | −a | 0.71 |
| −b | −e | +a | 0.001 |
| −b | −e | −a | 0.999 |
Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?
 \[2^N\]

- How big is an N-node net if nodes have up to k parents?
 \[O(N \times 2^{k+1})\]

- Both give you the power to calculate \(P(X_1, X_2, \ldots, X_n)\)
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)
Building the (Entire) Joint

- We can take a Bayes’ net and build any entry from the full joint distribution it encodes.

\[
P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))
\]

- Typically, there’s no reason to build ALL of it.
- We build what we need on the fly.

- To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure.
Bayes’ Nets So Far

- We now know:
 - What is a Bayes’ net?
 - What joint distribution does a Bayes’ net encode?

- Now: properties of that joint distribution (independence)
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence

- Next: how to compute posteriors quickly (inference)
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

\[P(x_i | x_1 \cdots x_{i-1}) = P(x_i | \text{parents}(X_i)) \]

- Probability distributions that satisfy the above ("chain-rule→Bayes net") conditional independence assumptions
 - Often guaranteed to have many more conditional independences
 - Additional conditional independences can be read off the graph

- Important for modeling: understand assumptions made when choosing a Bayes net graph
Example

- Conditional independence assumptions directly from simplifications in chain rule:

- Additional implied conditional independence assumptions?
Conditional Independence

- Reminder: independence
 - X and Y are independent if
 \[\forall x, y \quad P(x, y) = P(x)P(y) \quad \rightarrow \quad X \independent Y \]
 - X and Y are conditionally independent given Z
 \[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \quad \rightarrow \quad X \independent Y|Z \]
 - (Conditional) independence is a property of a distribution
D-separation: Outline

- Study independence properties for triples

- Any complex example can be analyzed using these three canonical cases
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

```
X -- Y -- Z
```

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?
Causal Chains

- This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

- Is X independent of Z given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y) \]

Yes!

- Evidence along the chain “blocks” the influence

X: Low pressure
Y: Rain
Z: Traffic
Another basic configuration: two effects of the same cause

- Are X and Z independent?

- Are X and Z independent given Y?

\[
P(z | x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x | y)P(z | y)}{P(y)P(x | y)} = P(z | y)
\]

Yes!

Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining
Z: Ballgame
Y: Traffic
The General Case

- Any complex example can be analyzed using these three canonical cases

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: analyze the graph
Reachability

- **Recipe:** shade evidence nodes

- **Attempt 1:** if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

- **Almost works, but not quite**
 - Where does it break?
 - **Answer:** the v-structure at T doesn’t count as a link in a path unless “active”
Reachability (D-Separation)

- **Question:** Are X and Y conditionally independent given evidence vars \(\{Z\} \)?
 - Yes, if X and Y “separated” by Z
 - Look for active paths from X to Y
 - No active paths = independence!

- **A path is active if each triple is active:**
 - Causal chain \(A \rightarrow B \rightarrow C \) where B is unobserved (either direction)
 - Common cause \(A \leftarrow B \rightarrow C \) where B is unobserved
 - Common effect (aka v-structure) \(A \rightarrow B \leftarrow C \) where B or one of its descendents is observed

- **All it takes to block a path is a single inactive segment**
D-Separation

- Given query $X_i \perp \!\!\!\!\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$
- Shade all evidence nodes
- For all (undirected!) paths between and
 - Check whether path is active
 - If active return $X_i \perp \!\!\!\!\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$
- (If reaching this point all paths have been checked and shown inactive)
 - Return $X_i \perp \!\!\!\!\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$
Example

\[R \perp B \]
\[R \perp B | T \]
\[R \perp B | T' \]
Example

\begin{align*}
L \perp T' | T & \quad \text{Yes} \\
L \perp B & \quad \text{Yes} \\
L \perp B | T & \\
L \perp B | T' & \\
L \perp B | T, R & \quad \text{Yes} \\
\end{align*}
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**

 \[T \perp D \]

 \[T \perp D \mid R \quad \text{Yes} \]

 \[T \perp D \mid R, S \]
Given a Bayes net structure, can run d-separation to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp\!\!\!\!\!\!\!\!\!\!\perp X_j \mid \{X_{k_1}, \ldots, X_{k_m}\} \]

This list determines the set of probability distributions that can be represented.
Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence
Example: Traffic

- Basic traffic net
- Let’s multiply out the joint

\[P(R) \]

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>(\neg r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>(\neg r)</td>
<td>3/4</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T|R) \]

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>(\neg r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>(\neg t)</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T, R) \]

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>(\neg r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>3/16</td>
<td></td>
</tr>
<tr>
<td>(\neg t)</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>(\neg r) t</td>
<td>6/16</td>
<td></td>
</tr>
<tr>
<td>(\neg r) (\neg t)</td>
<td>6/16</td>
<td></td>
</tr>
</tbody>
</table>
Example: Reverse Traffic

- Reverse causality?

\[
\begin{array}{c|c}
\text{t} & 9/16 \\
\hline
\text{¬t} & 7/16 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{t} & \text{r} & 1/3 \\
\hline
\text{¬r} & 2/3 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{r} & \text{t} & 3/16 \\
\hline
\text{r} & \text{¬t} & 1/16 \\
\hline
\text{¬r} & \text{t} & 6/16 \\
\hline
\text{¬r} & \text{¬t} & 6/16 \\
\end{array}
\]
Example: Coins

- Extra arcs don’t prevent representing independence, just allow non-independence

\[
P(X_1) = \begin{pmatrix} h & 0.5 \\ t & 0.5 \end{pmatrix}, \quad P(X_2) = \begin{pmatrix} h & 0.5 \\ t & 0.5 \end{pmatrix}, \quad P(X_1) = \begin{pmatrix} h & 0.5 \\ t & 0.5 \end{pmatrix}, \quad P(X_2 | X_1) = \begin{pmatrix} h | h & 0.5 \\ t | h & 0.5 \\ h | t & 0.5 \\ t | t & 0.5 \end{pmatrix}
\]

- Adding unneeded arcs isn’t wrong, it’s just inefficient
Summary

- Bayes nets compactly encode joint distributions

- Guaranteed independencies of distributions can be deduced from BN graph structure

- D-separation gives precise conditional independence guarantees from graph alone

- A Bayes’ net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution
Example: Alarm Network

\[\prod_{i} P(X_i|\text{Parents}(X_i)) = P(B) \cdot P(E) \cdot P(A|B, E) \cdot P(J|A) \cdot P(M|A) \]
Reachability (the Bayes’ Ball)

- Correct algorithm:
 - Shade in evidence
 - Start at source node
 - Try to reach target by search

- States: pair of (node X, previous state S)

- Successor function:
 - X unobserved:
 - To any child
 - To any parent if coming from a child
 - X observed:
 - From parent to parent

- If you can’t reach a node, it’s conditionally independent of the start node given evidence
Example: Independence

- For this graph, you can fiddle with θ (the CPTs) all you want, but you won’t be able to represent any distribution in which the flips are dependent!

\[
\begin{align*}
\text{All distributions} &
\end{align*}
\]
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence.)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.
Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node’s true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this **insensitivity to monotonic transformations**
- For expectimax, we need *magnitudes* to be meaningful

This slide deck courtesy of Dan Klein at UC Berkeley
Multi-Agent Utilities

- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility
 - Can give rise to cooperation and competition dynamically…
Maximum Expected Utility

- Why should we average utilities? Why not minimax?

- Principle of maximum expected utility:
 - A rational agent should choose the action which maximizes its expected utility, given its knowledge

- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - Why are we taking expectations of utilities (not, e.g. minimax)?
 - What if our behavior can’t be described by utilities?