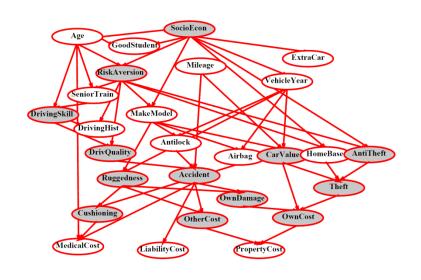
#### Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
  - Unless there are only a few variables, the joint is WAY too big to represent explicitly
  - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
  - More properly called graphical models
  - We describe how variables locally interact
  - Local interactions chain together to give global, indirect interactions
  - For about 10 min, we'll be vague about how these interactions are specified

#### Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

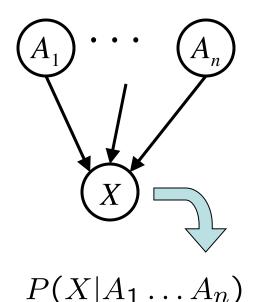


- Questions we can ask:
  - Inference: given a fixed BN, what is P(X | e)?
  - Representation: given a BN graph, what kinds of distributions can it encode?
  - Modeling: what BN is most appropriate for a given domain?

#### Bayes' Net Semantics

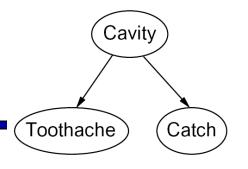
- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
  - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$



- CPT: conditional probability table
- Description of a noisy "causal" process

#### Probabilities in BNs



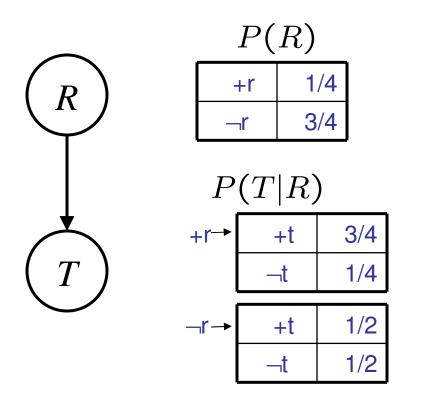
- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:  $P(+cavity, +catch, \neg toothache)$ 

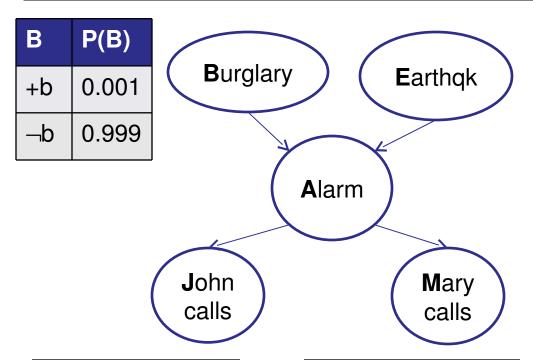
- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
  - The topology enforces certain conditional independencies

# Example: Traffic



$$P(+r, \neg t) =$$

#### Example: Alarm Network



| Α  | 7          | P(J A) |
|----|------------|--------|
| +a | +j         | 0.9    |
| +a | · <u> </u> | 0.1    |
| ¬a | +j         | 0.05   |
| −a | −j         | 0.95   |

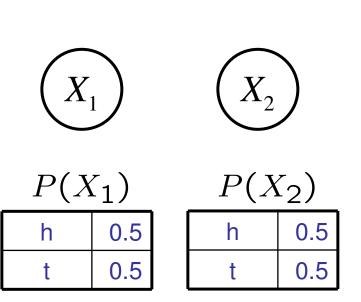
| A  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | −m | 0.3    |
| –a | +m | 0.01   |
| ¬а | ⊸m | 0.99   |

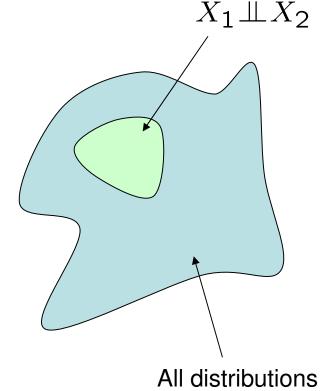
| Е          | P(E)  |
|------------|-------|
| +e         | 0.002 |
| <b>−</b> е | 0.998 |

| В  | Ε  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | −a | 0.05     |
| +b | ¬e | +a | 0.94     |
| +b | ¬e | −a | 0.06     |
| ⊸b | +e | +a | 0.29     |
| ⊣b | +e | −a | 0.71     |
| ⊸b | ¬e | +a | 0.001    |
| ⊸b | ¬e | −a | 0.999    |

#### Example: Independence

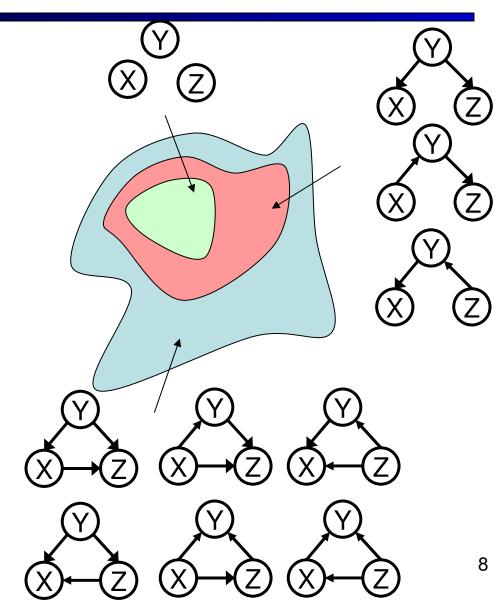
For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!





### **Topology Limits Distributions**

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

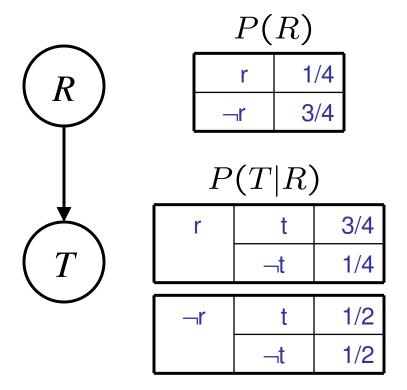


#### Causality?

- When Bayes' nets reflect the true causal patterns:
  - Often simpler (nodes have fewer parents)
  - Often easier to think about
  - Often easier to elicit from experts
- BNs need not actually be causal
  - Sometimes no causal net exists over the domain (especially if variables are missing)
  - E.g. consider the variables *Traffic* and *Drips*
  - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
  - Topology may happen to encode causal structure
  - Topology really encodes conditional independence

#### Example: Traffic

#### Causal direction

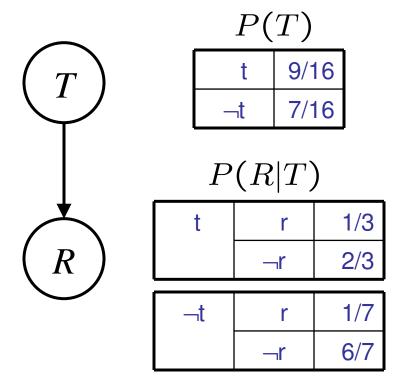


| 1 (1,10) |    |      |  |
|----------|----|------|--|
| r        | t  | 3/16 |  |
| r        | −t | 1/16 |  |
| <u> </u> | t  | 6/16 |  |
| ¬r       | ⊸t | 6/16 |  |

P(T,R)

#### Example: Reverse Traffic

Reverse causality?



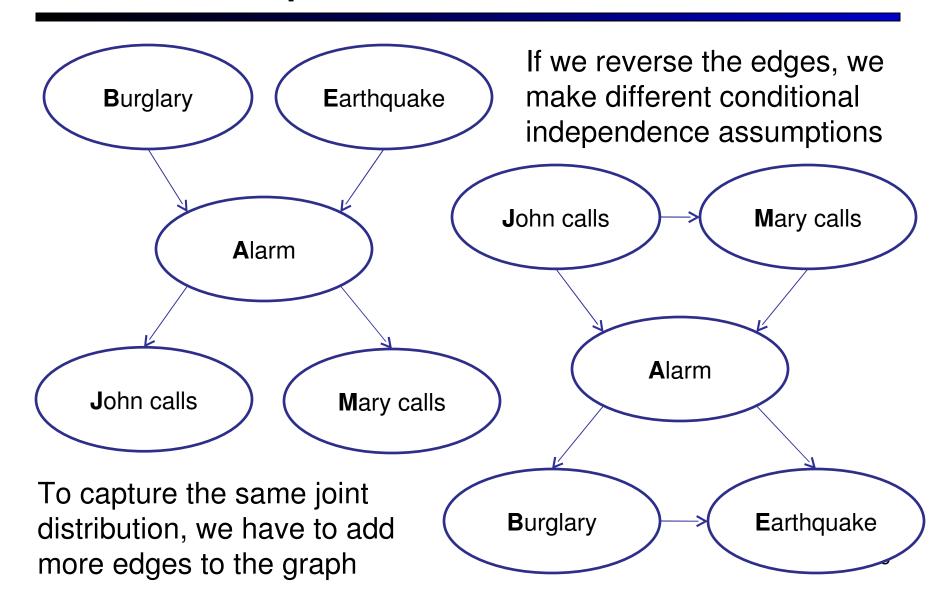
| I(I,Ib) |    |      |  |
|---------|----|------|--|
| r       | t  | 3/16 |  |
| r       | Ť  | 1/16 |  |
| ⊣r      | t  | 6/16 |  |
| ¬r      | –t | 6/16 |  |

P(T|R)

#### Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
  - Causal structure tends to be the simplest
- Analysis question: given some edges, what other edges do you need to add?
  - One answer: fully connect the graph
  - Better answer: don't make any false conditional independence assumptions

### Example: Alternate Alarm



#### Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
  - Key idea: conditional independence
  - Today: assembled BNs using an intuitive notion of conditional independence as causality
  - Next: formalize these ideas
  - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

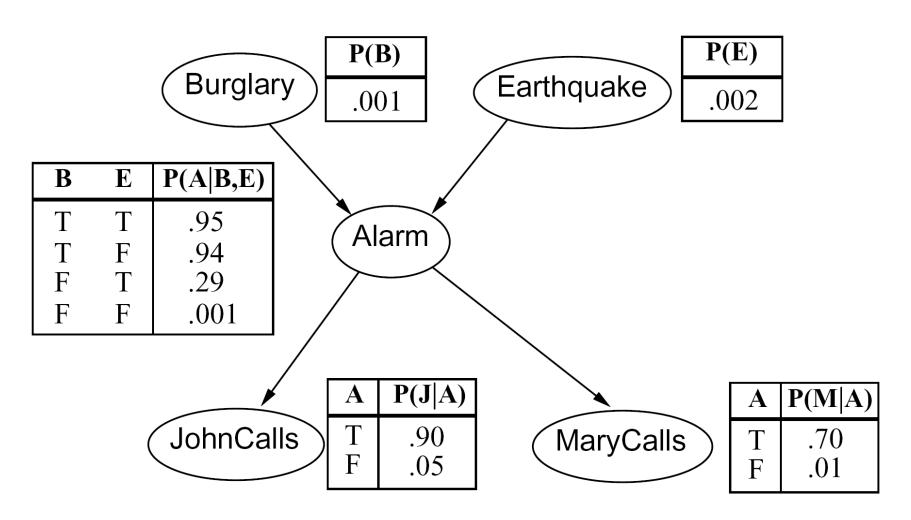
#### Example: Naïve Bayes

Imagine we have one cause y and several effects x:

$$P(y, x_1, x_2...x_n) = P(y)P(x_1|y)P(x_2|y)...P(x_n|y)$$

- This is a naïve Bayes model
- We'll use these for classification later

#### Example: Alarm Network



#### The Chain Rule

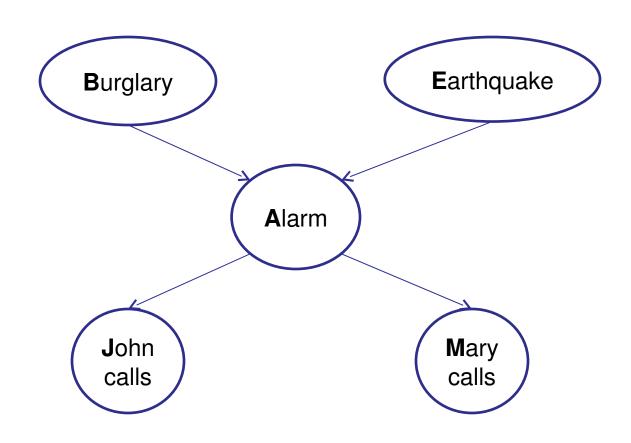
 Can always factor any joint distribution as an incremental product of conditional distributions

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

$$P(X_1, X_2, ... X_n) = \prod_i P(X_i | X_1 ... X_{i-1})$$

- Why is the chain rule true?
- This actually claims nothing...
- What are the sizes of the tables we supply?

#### Example: Alarm Network

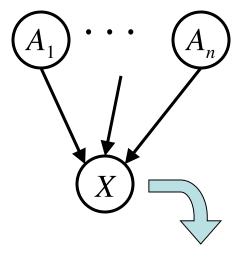


$$\prod P(X_i|\operatorname{Parents}(X_i)) = P(B) \cdot P(E) \cdot P(A|B,E) \cdot P(J|A) \cdot P(M|A)$$

#### Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
  - A collection of distributions over X, one for each combination of parents' values

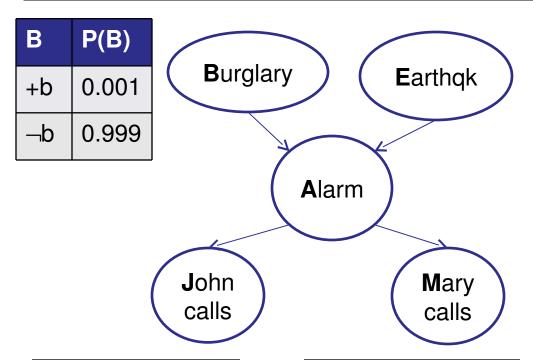
$$P(X|a_1 \ldots a_n)$$



$$P(X|A_1\ldots A_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

#### Example: Alarm Network



| Α  | 7          | P(J A) |
|----|------------|--------|
| +a | +j         | 0.9    |
| +a | · <u> </u> | 0.1    |
| ¬a | +j         | 0.05   |
| −a | −j         | 0.95   |

| A  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | −m | 0.3    |
| –a | +m | 0.01   |
| ¬а | ⊸m | 0.99   |

| Е          | P(E)  |
|------------|-------|
| +e         | 0.002 |
| <b>−</b> е | 0.998 |

| В  | Ε  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | −a | 0.05     |
| +b | ¬e | +a | 0.94     |
| +b | ¬e | −a | 0.06     |
| ⊸b | +e | +a | 0.29     |
| ⊣b | +e | −a | 0.71     |
| ⊸b | ¬e | +a | 0.001    |
| ⊸b | ¬e | −a | 0.999    |

### Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
   2<sup>N</sup>
- How big is an N-node net if nodes have up to k parents?
   O(N \* 2<sup>k+1</sup>)
- Both give you the power to calculate  $P(X_1, X_2, ..., X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

# Building the (Entire) Joint

We can take a Bayes' net and build any entry from the full joint distribution it encodes

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Typically, there's no reason to build ALL of it
- We build what we need on the fly
- To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure 22

#### Bayes' Nets So Far

- We now know:
  - What is a Bayes' net?
  - What joint distribution does a Bayes' net encode?
- Now: properties of that joint distribution (independence)
  - Key idea: conditional independence
  - Last class: assembled BNs using an intuitive notion of conditional independence as causality
  - Today: formalize these ideas
  - Main goal: answer queries about conditional independence and influence
- Next: how to compute posteriors quickly (inference)

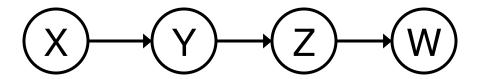
### Bayes Nets: Assumptions

Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Probability distributions that satisfy the above ("chain-rule→Bayes net") conditional independence assumptions
  - Often guaranteed to have many more conditional independences
  - Additional conditional independences can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

### Example



 Conditional independence assumptions directly from simplifications in chain rule:

• Additional implied conditional independence assumptions?

#### Conditional Independence

- Reminder: independence
  - X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) - - \rightarrow X \perp \perp Y|Z$$

(Conditional) independence is a property of a distribution

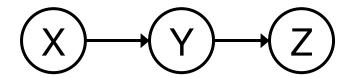
#### D-separation: Outline

Study independence properties for triples

 Any complex example can be analyzed using these three canonical cases

#### Independence in a BN

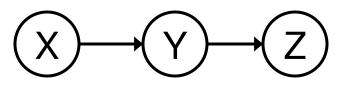
- Important question about a BN:
  - Are two nodes independent given certain evidence?
  - If yes, can prove using algebra (tedious in general)
  - If no, can prove with a counter example
  - Example:



- Question: are X and Z necessarily independent?
  - Answer: no. Example: low pressure causes rain, which causes traffic.
  - X can influence Z, Z can influence X (via Y)
  - Addendum: they could be independent: how?

#### Causal Chains

This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

X: Low pressure

Y: Rain

Z: Traffic

Is X independent of Z given Y?

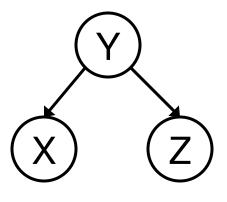
$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y) \qquad \qquad Yes!$$

Evidence along the chain "blocks" the influence

#### Common Cause

- Another basic configuration: two effects of the same cause
  - Are X and Z independent?
  - Are X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
$$= P(z|y)$$
$$= P(z|y)$$
Yes!



Y: Project due

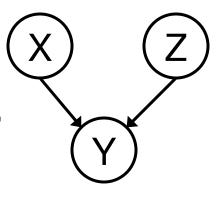
X: Newsgroup busy

Z: Lab full

Observing the cause blocks influence between effects.

#### Common Effect

- Last configuration: two causes of one effect (v-structures)
  - Are X and Z independent?
    - Yes: the ballgame and the rain cause traffic, but they are not correlated
    - Still need to prove they must be (try it!)
  - Are X and Z independent given Y?
    - No: seeing traffic puts the rain and the ballgame in competition as explanation?
  - This is backwards from the other cases
    - Observing an effect activates influence between possible causes.



X: Raining

Z: Ballgame

Y: Traffic

#### The General Case

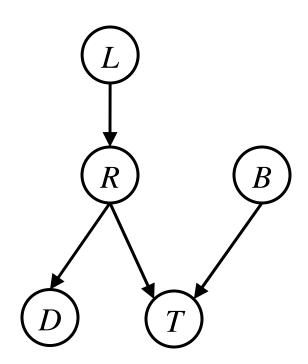
 Any complex example can be analyzed using these three canonical cases

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

#### Reachability

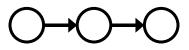
- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
  - Where does it break?
  - Answer: the v-structure at T doesn't count as a link in a path unless "active"

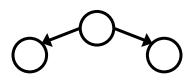


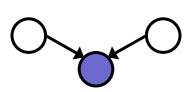
# Reachability (D-Separation)

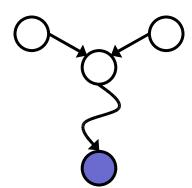
- Question: Are X and Y conditionally independent given evidence vars {Z}?
  - Yes, if X and Y "separated" by Z
  - Look for active paths from X to Y
  - No active paths = independence!
- A path is active if each triple is active:
  - Causal chain A → B → C where B is unobserved (either direction)
  - Common cause A ←B →C where B is unobserved
  - Common effect (aka v-structure)
     A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

**Active Triples** 

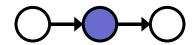


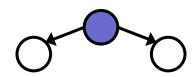






**Inactive Triples** 





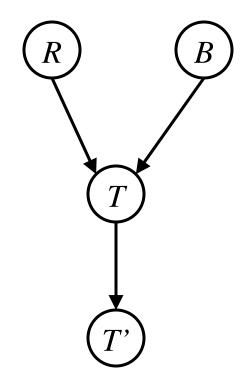


#### **D-Separation**

- Given query  $X_i \stackrel{!}{\perp} X_i | \{X_{k_1}, ..., X_{k_n}\}$
- Shade all evidence nodes
- For all (undirected!) paths between and

  - Check whether path is active If active return  $X_i \not\perp X_j | \{X_{k_1},...,X_{k_n}\}$
- (If reaching this point all paths have been checked and shown inactive)  $X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}$  Return

# Example



# Example

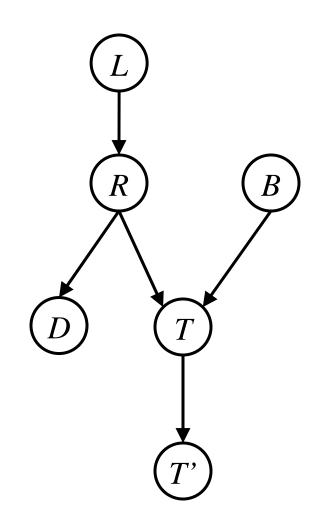
$$L \perp \!\!\! \perp T' | T$$
 Yes

$$L \! \perp \! \! \! \perp \! \! B$$
 Yes

$$L \! \perp \! \! \perp \! \! \! \! \perp \! \! \! \! \! \! B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \perp \!\!\! \perp B | T, R$$
 Yes



# Example

#### Variables:

R: Raining

T: Traffic

D: Roof drips

S: I'm sad

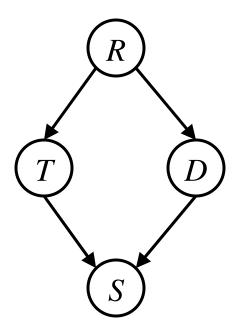
#### • Questions:

$$T \! \perp \!\!\! \perp \!\!\! D$$

$$T \perp \!\!\! \perp D | R$$

Yes

$$T \perp\!\!\!\perp D | R, S$$



• Given a Bayes net structure, can run de All Conditional independences separation to build a complete list of

conditional independences that are necessarily true of the form

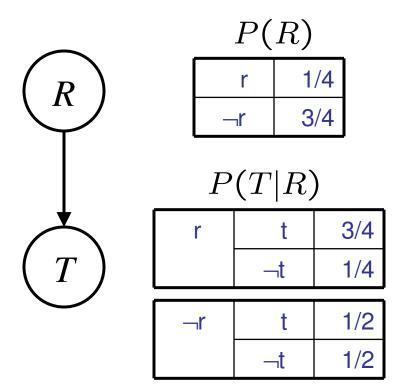
 This list determines the set of probability distributions that can be represented

### Causality?

- When Bayes' nets reflect the true causal patterns:
  - Often simpler (nodes have fewer parents)
  - Often easier to think about
  - Often easier to elicit from experts
- BNs need not actually be causal
  - Sometimes no causal net exists over the domain
  - E.g. consider the variables *Traffic* and *Drips*
  - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
  - Topology may happen to encode causal structure
  - Topology only guaranteed to encode conditional independence

# Example: Traffic

- Basic traffic net
- Let's multiply out the joint

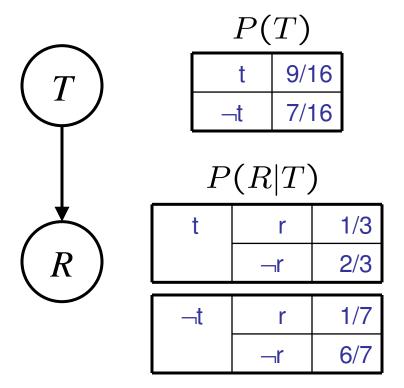


| r  | t  | 3/16 |  |
|----|----|------|--|
| r  | _t | 1/16 |  |
| ⊣r | t  | 6/16 |  |
| r  | ⊤t | 6/16 |  |

P(T|R)

### Example: Reverse Traffic

Reverse causality?

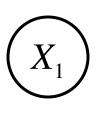


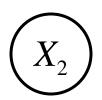
| F(I, R) |    |      |  |  |
|---------|----|------|--|--|
| r       | t  | 3/16 |  |  |
| r       | Ť  | 1/16 |  |  |
| ¬r      | t  | 6/16 |  |  |
| ⊣r      | –t | 6/16 |  |  |

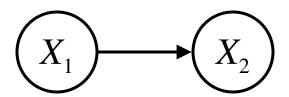
D(T D)

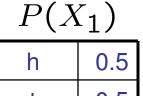
### Example: Coins

 Extra arcs don't prevent representing independence, just allow non-independence



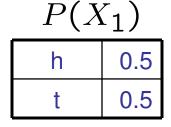






| h | 0.5 |
|---|-----|
| t | 0.5 |

 $P(X_2)$ 



$$P(X_2|X_1)$$
 $h \mid h \mid 0.5$ 
 $t \mid h \mid 0.5$ 

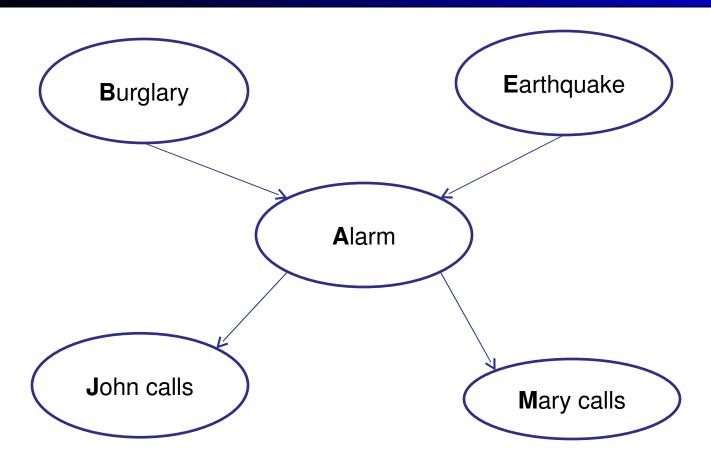
| h   t | 0.5 |
|-------|-----|
| t   t | 0.5 |

 Adding unneeded arcs isn't wrong, it's just inefficient

# Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

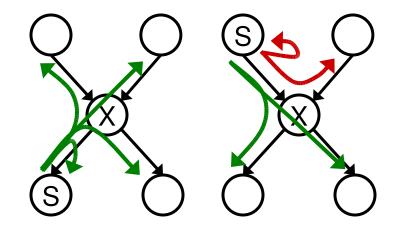
## Example: Alarm Network

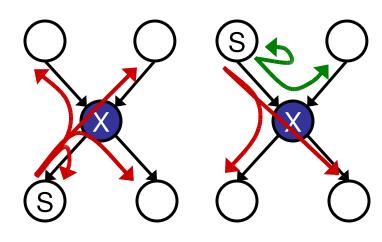


$$\prod P(X_i|\operatorname{Parents}(X_i)) = P(B) \cdot P(E) \cdot P(A|B,E) \cdot P(J|A) \cdot P(M|A)$$

# Reachability (the Bayes' Ball)

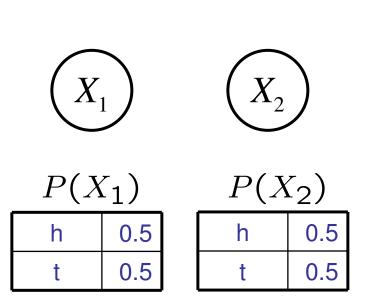
- Correct algorithm:
  - Shade in evidence
  - Start at source node
  - Try to reach target by search
  - States: pair of (node X, previous state S)
  - Successor function:
    - X unobserved:
      - To any child
      - To any parent if coming from a child
    - X observed:
      - From parent to parent
  - If you can't reach a node, it's conditionally independent of the start node given evidence

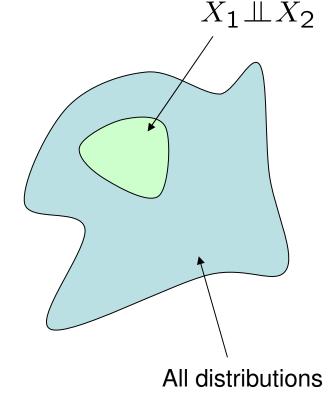




### Example: Independence

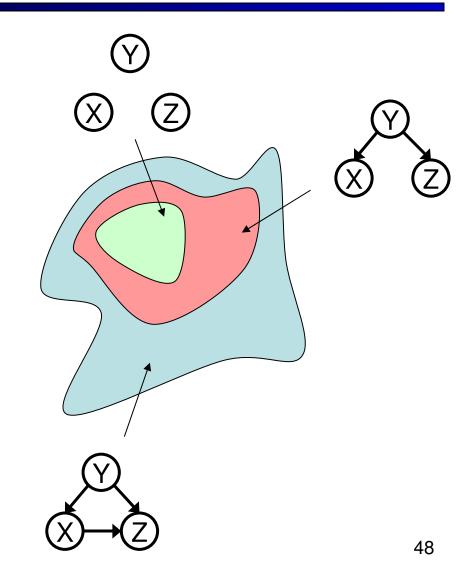
For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!





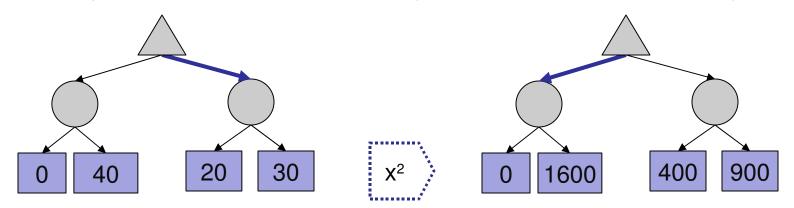
# **Topology Limits Distributions**

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



## **Expectimax Evaluation**

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
  - We just want better states to have higher evaluations (get the ordering right)
  - We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

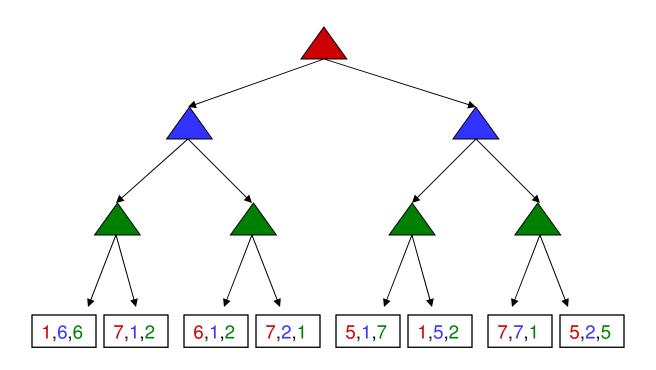


This slide deck courtesy of Dan Klein at UC Berkeley

# Multi-Agent Utilities

# Similar to minimax:

- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own utility
- Can give rise to cooperation and competition dynamically...



# Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
  - A rational agent should chose the action which maximizes its expected utility, given its knowledge

#### • Questions:

- Where do utilities come from?
- How do we know such utilities even exist?
- Why are we taking expectations of utilities (not, e.g. minimax)?
- What if our behavior can't be described by utilities?