Bayes' Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

= Hard to learn (estimate) anything empirically about more than a
few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= | ocal interactions chain together to give global, indirect
interactions

= For about 10 min, we’'ll be vague about how these interactions
are specified 1



Bayes' Nets

= A Bayes netis an
efficient encoding
of a probabillistic
model of a domain

= Questions we can ask:
* Inference: given a fixed BN, what is P(X | e)?

* Representation: given a BN graph, what kinds of
distributions can it encode?

* Modeling: what BN is most appropriate for a given
domain?
This slide deck courtesy of Dan Klein



Bayes' Net Semantics

Let’s formalize the semantics of a
Bayes' net

A set of nodes, one per variable X

A directed, acyclic graph

A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values

P(X|aq1...an)

= CPT: conditional probability table
= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities .



Toothache @

= Bayes' nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

Probabilities in BNs

mn
P(z1,x2,...zn) = || P(x;|parents(X;))
i=1
= Example:
P(+cavity, +catch, —~toothache)

= This lets us reconstruct any entry of the full joint

= Not every BN can represent every joint distribution
* The topology enforces certain conditional independencies 4



Example: Traffic
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Example: Alarm Network
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Example: Independence

= For this graph, you can fiddle with 8 (the CPTs) all you
want, but you won’t be able to represent any distribution

iIn which the flips are dependent!
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Topology Limits Distributions

Given some graph
topology G, only certain
joint distributions can
be encoded

The graph structure
guarantees certain
(conditional)
independences

(There might be more
independence)

Adding arcs increases
the set of distributions,
but has several costs

Full conditioning can
encode any distribution
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Causality?

* When Bayes’ nets reflect the true causal patterns:
= QOften simpler (nodes have fewer parents)
= QOften easier to think about
= QOften easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain (especially if
variables are missing)

* E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology really encodes conditional independence



Example: Traffic

= Causal direction

P(R)

r

1/4

mlf

3/4

P(T|R)

r

t

3/4

ml!

1/4

t

1/2

ml!

1/2

10



Example: Reverse Traffic

= Reverse causality?
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Changing Bayes’ Net Structure

= The same joint distribution can be encoded in many
different Bayes’ nets
= (Causal structure tends to be the simplest

= Analysis question: given some edges, what other edges
do you need to add?
= One answer: fully connect the graph

= Better answer: don’t make any false conditional independence
assumptions

12



Example: Alternate Alarm
If we reverse the edges, we
Burglary Earthquake make different conditional
iIndependence assumptions

To capture the same joint
distribution, we have to add Burglary Earthquake
more edges to the graph 4




Bayes' Nets

= So far: how a Bayes’ net encodes a joint distribution

= Next: how to answer queries about that distribution
= Key idea: conditional independence

= Today: assembled BNs using an intuitive notion of conditional
independence as causality

= Next: formalize these ideas

= Main goal: answer queries about conditional independence and
influence

= After that: how to answer numerical queries (inference)

14



Example: Naive Bayes

* |[magine we have one cause y and several effects x:

P(y,z1,22...2n) = P(y)P(z1|ly) P(z2]y) ... P(anly)

* This is a naive Bayes model
= We’ll use these for classification later

15



Example: Alarm Network
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The Chain Rule

= Can always factor any joint distribution as an incremental
product of conditional distributions

P(X1, Xo,...Xn) = P(X1)P(X5|X1)P(X35|X1, X5)...

P(X1,X2,...Xp) = [[ P(Xi|X1 ... X;_1)
)

= Why is the chain rule true?
= This actually claims nothing...

= What are the sizes of the tables we supply?

17



Example: Alarm Network

Burglary Earthquake

[] P(X:[Parents(X;)) = P(B) - P(E) - P(A|B, E) - P(J|A) - P(M|A)

0



Bayes' Net Semantics

Let’s formalize the semantics of a
Bayes' net

A set of nodes, one per variable X

A directed, acyclic graph

A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values

P(X|aq1...an)

= CPT: conditional probability table
= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities 5



Example: Alarm Network
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Size of a Bayes’ Net

How big is a joint distribution over N Boolean variables?

2N

How big is an N-node net if nodes have up to k parents?
O(N * 2k+1)

Both give you the power to calculate P(X1,X2,... Xn)
BNs: Huge space savings!

Also easier to elicit local CPTs

Also turns out to be faster to answer queries (coming)

21



Building the (Entire) Joint

= We can take a Bayes' net and build any entry
from the full joint distribution it encodes

mn
P(z1,x2,...2zn) = || P(x;|parents(X;))
i=1

= Typically, there’s no reason to build ALL of it
= We build what we need on the fly

* To emphasize: every BN over a domain implicitly
defines a joint distribution over that domain,
specified by local probabilities and graph
structure 22



Bayes’ Nets So Far

= We now know:
= What is a Bayes’ net?
* What joint distribution does a Bayes’ net encode?

= Now: properties of that joint distribution (independence)
= Key idea: conditional independence

* | ast class: assembled BNs using an intuitive notion of
conditional independence as causality

* Today: formalize these ideas

= Main goal: answer queries about conditional
iIndependence and influence

= Next: how to compute posteriors quickly (inference)
23



Bayes Nets: Assumptions

= Assumptions we are required to make to define the Bayes
net when given the graph:

P(xi|xy - xi_1) = P(x;|parents(X;))
= Probability distributions that satisfy the above (“chain-
rule>Bayes net”) conditional independence assumptions

= QOften guaranteed to have many more conditional independences
= Additional conditional independences can be read off the graph

* |mportant for modeling: understand assumptions made
when choosing a Bayes net graph

24



Example

= Conditional independence assumptions directly from
simplifications in chain rule:

= Additional implied conditional independence
assumptions?

25



Conditional Independence

* Reminder: independence
= X and Y are independent if

Ve,y P(z,y) = P(x)P(y) - --=> X1Y

= X and Y are conditionally independent given Z
Vr,y,z P(x,y|lz) = P(x|z)P(ylz)--=> X1 Y|Z

= (Conditional) independence is a property of a
distribution

26



D-separation: Outline

= Study independence properties for triples

= Any complex example can be analyzed
using these three canonical cases

27



Independence in a BN

* |mportant question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, can prove using algebra (tedious in general)
* |f no, can prove with a counter example

= Example:

= Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which
causes traffic.

= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?



Causal Chains

= This configuration is a “causal chain”

X: Low pressure

@—’@—@ Y: Rain

Z: Traffic
P(z,y,z) = P(x)P(y|lz)P(z|y)

* |s X independent of Z given Y?
P(z,y,2) _ P(z)P(ylz) P(z|y)
P(z,y) P(xz)P(y|z)

P(z|lz,y) =

= P(z|y) Yes!/

= Evidence along the chain “blocks” the influence 29



Common Cause

= Another basic configuration: two
effects of the same cause

* Are X and Z independent?

* Are X and Z independent given Y?
P(z,y,2) _ P(y)P(z|y)P(z|y) Y: Project due

P(z,y) P(y)P(z|y) X: Newsgroup
busy
— P(z .
(z]y) Yes! Z: Lab full

* Observing the cause blocks
iInfluence between effects. 30



Common Effect

= | ast configuration: two causes of
one effect (v-structures)

* Are X and Z independent?

* Yes: the ballgame and the rain cause traffic,
but they are not correlated

= Still need to prove they must be (try it!)
= Are X and Z independent given Y?

X: Raining
= No: seeing traffic pqt§ the rain and the Z: Ballgame
ballgame in competition as explanation?
Y: Traffic

= This is backwards from the other cases

= Observing an effect activates influence

between possible causes. "



The General Case

= Any complex example can be analyzed using
these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: analyze the graph

32



Reachability

* Recipe: shade evidence nodes

= Attempt 1: if two nodes are
connected by an undirected path
not blocked by a shaded node,
they are conditionally independent

= Almost works, but not quite
= Where does it break?

= Answer: the v-structure at T doesn't
count as a link in a path unless “active”

33



Reachability (D-Separation)

conditionally independent
given evidence vars {Z}?
= Yes, if Xand Y “separated” by Z
= Look for active paths from Xto Y
= No active paths = independence!

= A path is active if each triple
IS active:

= Causalchain A - B - C where B
is unobserved (either direction)

= Common cause A -~ B - C where
B is unobserved

= Common effect (aka v-structure)

A - B —~ C where B or one of its
descendents is observed

= All it takes to block a path is
a single inactive segment

Active Triples

€ §

Inactive Triples

O-@-O
o0
o



D-Separation

" Givenquery X; H X;|{Xy,,..., Xy, }
= Shade all evidence nodes

= For all (undirected!) paths between and

* Check whether path is active
= |[f active return Xi 7[ Xj|{Xk17 eey an}

= (If reaching this point all paths have been

checked and shown | nactlve

menn A D XXX )

35



RI B
R B|T
R B|T'

Example

Yes
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Example

LILTT Yes
OO

LI B Yes
L1 B|T

L1 B|T’
LI B|T,R VYes @
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Example

= Variables:
= R: Raining
= T: Traffic
= D: Roof drips
* S: I'm sad

= Questions:

T DR Yes
T1 DIR,S

38
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Causality?

* When Bayes’ nets reflect the true causal patterns:
= QOften simpler (nodes have fewer parents)
= QOften easier to think about
= QOften easier to elicit from experts

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
= E.g. consider the variables Traffic and Drips
* End up with arrows that reflect correlation, not causation

* What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology only guaranteed to encode conditional independence

40



Example: Traffic

= Basic traffic net
= |et’s multiply out the joint

P(R) P(T, R)

T 14 ' t | 3/16

o | 94 r | -t | 1/16

or | ot | 6/16
r t 3/4
Ol HEE
-r t 1/2
St | 12
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Example: Reverse Traffic

= Reverse causality?
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Example: Coins

= Extra arcs don't prevent representing
iIndependence, just allow non-independence

OO

P(X1) P(X>) P(X1)  P(Xo[Xq)

h 0.5 h 0.5 h 0.5 h|ih | 0.5

t 0.5 t 0.5 t 0.5 t|h | 0.5

| | h|t | 0.5

" Adding unneeded arcs isn't tit | 05

wrong, it's just inefficient



Summary

= Bayes nets compactly encode joint distributions

* Guaranteed independencies of distributions can
be deduced from BN graph structure

= D-separation gives precise conditional
iIndependence guarantees from graph alone

= A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution 4



Example' Alarm Network

Burglary Earthquake

HP(X Parents(X;)) = P(B) - P(E) - P(A|B, E) - P(J|A) - P(M|A)



Reachabillity (the Bayes' Ball)

= (Correct algorithm:

Shade in evidence
Start at source node
Try to reach target by search

States: pair of (node X, previous
state S)

Successor function:
= X unobserved:
= To any child

= To any parent if coming from a
child

= X observed:
* From parent to parent

If you can’t reach a node, it’s
conditionally independent of the
start node given evidence

KX
19



Example: Independence

= For this graph, you can fiddle with 8 (the CPTs) all you
want, but you won'’t be able to represent any distribution
iIn which the flips are dependent!

OO

X711 X5
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h |05 h |05
t |05 t |05

All distributions
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Topology Limits Distributions

Given some graph
topology G, only certain
joint distributions can
be encoded

The graph structure
guarantees certain
(conditional)
independences

(There might be more
independence)

Adding arcs increases
the set of distributions,
but has several costs

Full conditioning can
encode any distribution

®

® @

93

8t
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Expectimax Evaluation

= Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

= For minimax, evaluation function scale doesn’t matter

= We just want better states to have higher evaluations
(get the ordering right)

= We call this insensitivity to monotonic transformations
* For expectimax, we need magnitudes to be meaningful

0 || 40 20 | | 30 P x2 0 |[1600 400 | | 900

This slide deck courtesy of Dan Klein at UC Berkeley



Multi-Agent Utilities

= Similar to
minimax:
= Terminals

have utility
tuples

* Node values
are also utility
tuples

= Each player
maximizes its
own utility

= Can give rise 1,66 [|71,2 (61,2721 ]| |517|[152 771|525

to cooperation
and
competition
dynamically...



Maximum Expected Utility

= Why should we average utilities? Why not minimax?

= Principle of maximum expected utility:

= A rational agent should chose the action which maximizes its
expected utility, given its knowledge

= Questions:
= Where do utilities come from?
= How do we know such utilities even exist?
= Why are we taking expectations of utilities (not, e.g. minimax)?
= What if our behavior can’t be described by utilities?

51
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