Expectimax Evaluation

= Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

= For minimax, evaluation function scale doesn’t matter

= We just want better states to have higher evaluations
(get the ordering right)

= We call this insensitivity to monotonic transformations
* For expectimax, we need magnitudes to be meaningful
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Multi-Agent Utilities

= Similar to
minimax:
= Terminals

have utility
tuples

* Node values
are also utility
tuples

= Each player
maximizes its
own utility

= Can give rise 1,66 [|71,2 (61,2721 ]| |517|[152 771|525

to cooperation
and
competition
dynamically...



Maximum Expected Utility

= Why should we average utilities? Why not minimax?

= Principle of maximum expected utility:

= A rational agent should chose the action which maximizes its
expected utility, given its knowledge

= Questions:
= Where do utilities come from?
= How do we know such utilities even exist?
= Why are we taking expectations of utilities (not, e.g. minimax)?
= What if our behavior can’t be described by utilities?



Utilities: Uncertain Outcomes

Going to airport from home

Get
Double

Get
Single

Oops Whew
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Preferences

= An agent chooses among:
" Prizes: A, B, etc.

= | otteries: situations with
uncertain prizes L

L=[p,A; (1-p), B]

P

= Notation:
A= B A preferred over B
A~ B indifference between A and B

A> B B not preferred over A



Rational Preferences

= Preferences of a rational agent must obey constraints.
* The axioms of rationality:

Orderability

(A=B)V(B»=A)V (A~ B)
Transitivity

(A-B)AN(B~-C)= (A>=C)
Continuity

A=-B>=C=3 [p,A; 1—p,C]~ B
Substitutability

A~B=[p,A; 1—pC]l~[p,B;1—p,C]
Monotonicity

A>B=

(r=>qe[pA 1—p,Bl=lq, A 1—gq,B])

= Theorem: Rational preferences imply behavior
describable as maximization of expected utility



MEU Principle

= Theorem:

= [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= @Given any preferences satisfying these constraints, there exists
a real-valued function U such that:

UA) >U(B) & A>B
U(lp1,S1; -+ 5 pn,Sn]) = > p;sU(S;)

= Maximum expected utility (MEU) principle:
= Choose the action that maximizes expected utility

= Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and
probabilities

= E.g., alookup table for perfect tictactoe, reflex vacuum cleaner



Utility Scales

Normalized utilities: u, = 1.0, u = 0.0

Micromorts: one-millionth chance of death, useful for paying to
reduce product risks, etc.

QALYSs: quality-adjusted life years, useful for medical decisions
iInvolving substantial risk

Note: behavior is invariant under positive linear transformation

U'(x) = kiU(z) + ko where k1 > 0

With deterministic prizes only (no lottery choices), only ordinal utility
can be determined, i.e., total order on prizes



Human Utilities

= Utilities map states to real numbers. Which numbers?

= Standard approach to assessment of human utilities:
= Compare a state A to a standard lottery L, between
= “pest possible prize” u, with probability p
= “worst possible catastrophe” u_ with probability 1-p
= Adjust lottery probability p until A ~ L
= Resulting p is a utility in [0,1]

0.999999 continue as before

pay $30 ~ L

instant death



Money

Money does not behave as a utility function, but we can talk about
the utility of having money (or being in debt)

Given a lottery L = [p, $X; (1-p), $Y]
* The expected monetary value EMV(L) is p*X + (1-p)*Y
U(L) = p*U($X) + (1-p)*U(8Y)
Typically, U(L) < U( EMV(L) ): why?
In this sense, people are risk-averse
When deep in debt, we are risk-prone

A 00 o

Utility curve: for what probability p -5

am | indifferent between: ~150,000 800,000

= Some sure outcome x
= A lottery [p,$M; (1-p),$0], M large

-
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Example: Insurance

= Consider the lottery [0.5,$1000; 0.5,$0]

* What is its expected monetary value? ($500)

* What is its certainty equivalent?
= Monetary value acceptable in lieu of lottery
= $400 for most people

= Difference of $100 is the insurance premium

= There’s an insurance industry because people will pay to
reduce their risk

= |f everyone were risk-neutral, no insurance needed!

11



Example: Human Rationality?

* Famous example of Allais (1953)

= A:[0.8,%$4k; 0.2,%0]
= B:[1.0,$3k; 0.0,%0]

= C:[0.2,$4k; 0.8,$0]
= D:[0.25,$3k; 0.75,$0]

* Most people prefer B> A, C>D
= But if U($0) = 0, then

= B> A O U($3k) > 0.8 U($4k)

= C>D 0.8 U($4k) > U($3k)

12






Non-Deterministic Search

How do you plan when your actions might fail?

14



Example: Grid World

The agent lives in a grid

Walls block the agent’s path

The agent’s actions do not always
go as planned:

" 80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

" If there is a wall in the direction the
agent would have been taken, the
agent stays put

Small “living” reward each step
Big rewards come at the end
Goal: maximize sum of rewards”

3

+ 1

START




Action Results

Deterministic Grid World

Stochastic Grid World

16



Markov Decision Processes

= An MDP is defined by:

= Asetofstatess S

* Asetofactionsa A

A transition function T(s,a,s’)
= Prob that a from s leads to s’
" l.e., P(s’| s,a)
= Also called the model

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state (or distribution)

Maybe a terminal state

= MDPs are a family of non-
deterministic search problems

= One way to solve them is with
expectimax search — but we’'ll
have a new tool soon

+ 1

1 START
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What is Markov about MDPs?

Andrey Markov (1856-1922)

“Markov” generally means that given
the present state, the future and the
past are independent

For Markov decision processes,
“Markov” means:

P(St—|—1 — Sl\St = 51, Ay = a, St—1 = 541, Av—1,...50 = So)

P(Siy1 = 5|5t = s¢, Ay = ay)



Solving MDPs

= |n deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

* |nan MDP, we want an optimal policy m*: S = A
= A policy Tt gives an action for each state

= An optimal policy maximizes expected utility if followed
= Defines a reflex agent (if precomputed)

3 —- —— — + 1

Optimal policy when 2 1 f —
R(s, a, s’) =-0.03 for all
non-terminals s

1 1  —— e ——




Example Optimal Policies
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Example: High-Low

= Rules
= Three card types: 2, 3, 4
= |nfinite deck, twice as many 2’s
= Start with 3 showing

= After each card, you guess the 3
next card will be “high” or “low”

*= New card is flipped

= |f you're right, you win the points
shown on the new card

= Ties are no-0ps
= |f you’re wrong, game ends

= How is this different from the
expectimax games? You can patch expectimax
" #1:getrewards as you go to deal with #1, but not #2...

= #2:you might play forever! o1



High-Low as an MDP

= States: 2, 3, 4, done
= Actions: High, Low

= Model: T(s, a, s):

P(s’=4 | 4, Low) = 1/4

P s’=3 4, Low) = 1/4 3

'=2 | 4, Low) = 1/2
'=done | 4, Low) =0

'=4 | 4, High) = 1/4

'=3 | 4, High) =

'=2 | 4, High) =0

'=done | 4, High) = 3/4

25
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* Rewards: R(s, a, s'):
= Number shownons’'ifs# g’
= () otherwise

= Start: 3



High-Low: Outcome Tree




MDP Search Trees

= Each MDP state gives an expectimax-like search tree

(s,a,s’) called a transition
T(s,a,s’) = P(s’|s,a)
R(s,a,s’)

24



Utilities of Sequences

= What utility does a sequence of rewards have?

= Formally, we generally assume stationary preferences:
[T7 TO? r].? T27 ° '] >_ [T7 TE)? T{I_J 74/2’ * " ‘]
&
[7"0, r1, T2, .. ] ~ [""6: T?]_a TJQ? . ]

= Theorem: only two ways to define stationary utilities

= Additive utility:
U([TO7T13T2,-..]) pm— ’T’O‘I—’r‘l —I—fr‘2—|—

m DiS(\r\nn-I'nhl vikilidge

U(lrg,r1,72,...]) = 1o+ ~r1 +f72r2 .

25



Infinite Utilities?!

= Problem: infinite state sequences have infinite rewards

. | |
Solutions:
. . A =
* Finite horizon: 7
= Terminate episodes after a fixed T steps (e.qg. life) il el el

= Gives nonstationary policies (1t depends on time left)

= Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached (like “done” for High-Low)
= Discounting:forO<y < 1

U([ro,...mo0]) = > ~vtry < Rmax/(1 —7)
t=0

= Smallery means smaller “horizon” — shorter term focus

26



Discounting

= Typically discount rewards by

Y < 1 each time step ~

= Sooner rewards have higher 1 <
utility than later rewards

= Also helps the algorithms

converge ~
. vo<
= Example: discount of 0.5
= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 =
= U([1,2,3]) < U([3,2,1]) -

27



Recap: Defining MDPs

= Markov decision processes:
= States S
= Start state s,
= Actions A
» Transitions P(s’|s,a) (or T(s,a,s")) » &S
* Rewards R(s,a,s’) (and discounty )

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility (or return) = “expectimax value” of a state

28



Optimal Utilities

Fundamental operation: compute
the values (optimal expectimax
utilities) of states s

Why? Optimal values define 7
optimal policies!

Define the value of a state s: o $a,8

V'(s) = expected utility starting in s
and acting optimally

Define the value of a g-state (s,a):
Q'(s,a) = expected utility starting out

having taken action a from state s
and (thereafter) acting optimally

(5]

0.812 0.868 0.912

2 0.762

0.660 E

Define the optimal policy:

Tt '(S) = optimal action from state s

1 0.705 0.655 0.611 0.388

29



The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

Optimal rewards = maximize over first )
action and then follow optimal policy o

= Formally:

V*(s) = max Q*(s, a)

QR*(s,a) => T(s,a, s [R(s, a,s’) + "YV*(S,)]

V*i(s) = mc?XZT(S’ a,s') {R(S, a,s’) + ny*(s’)}

S

30



Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
= This tree is usually infinite (why?)
= Same states appear over and over (why?)
= We would search once per state (why?)

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization

= Do all planning offline, no replanning
needed!

31
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