Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

This slide deck courtesy of Dan Klein at UC Berkeley

Multi-Agent Utilities

Similar to minimax:

- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own utility
- Can give rise to cooperation and competition dynamically...

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
 - A rational agent should chose the action which maximizes its expected utility, given its knowledge

• Questions:

- Where do utilities come from?
- How do we know such utilities even exist?
- Why are we taking expectations of utilities (not, e.g. minimax)?
- What if our behavior can't be described by utilities?

Utilities: Uncertain Outcomes

Going to airport from home

Preferences

An agent chooses among:

- Prizes: A, B, etc.
- Lotteries: situations with uncertain prizes

$$L = [p, A; (1-p), B]$$

Notation:

$$A \succ B$$
 A preferred over B

$$A \sim B$$
 indifference between A and B

$$A \succeq B$$
 B not preferred over A

Rational Preferences

- Preferences of a rational agent must obey constraints.
 - The axioms of rationality:

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

Theorem:

- [Ramsey, 1931; von Neumann & Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner

Utility Scales

- Normalized utilities: u₁ = 1.0, u₂ = 0.0
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

 With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state A to a standard lottery L_p between
 - "best possible prize" u_⊥ with probability p
 - "worst possible catastrophe" u_ with probability 1-p
 - Adjust lottery probability p until A ~ L_p
 - Resulting p is a utility in [0,1]

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
 - The expected monetary value EMV(L) is p*X + (1-p)*Y
 - $U(L) = p^*U(\$X) + (1-p)^*U(\$Y)$
 - Typically, U(L) < U(EMV(L)): why?</p>
 - In this sense, people are risk-averse
 - When deep in debt, we are risk-prone
- Utility curve: for what probability p am I indifferent between:
 - Some sure outcome x
 - A lottery [p,\$M; (1-p),\$0], M large

Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]
 - What is its expected monetary value? (\$500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!

Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8,\$4k; 0.2,\$0]
 - B: [1.0,\$3k; 0.0,\$0]
 - C: [0.2,\$4k; 0.8,\$0]
 - D: [0.25,\$3k; 0.75,\$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 - $B > A \Rightarrow U(\$3k) > 0.8 U(\$4k)$
 - $C > D \Rightarrow 0.8 U(\$4k) > U(\$3k)$

Non-Deterministic Search

How do you plan when your actions might fail?

Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*

Action Results

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
- MDPs are a family of nondeterministic search problems
 - One way to solve them is with expectimax search – but we'll have a new tool soon

What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy π *: S \rightarrow A
 - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent (if precomputed)

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Example Optimal Policies

R(s) = -0.01

R(s) = -0.4

R(s) = -0.03

R(s) = -2.0

Example: High-Low

Rules

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you guess the next card will be "high" or "low"
- New card is flipped
- If you're right, you win the points shown on the new card
- Ties are no-ops
- If you're wrong, game ends

#1: get rewards as you go

#2: you might play forever!

You can patch expectimax to deal with #1, but not #2...

High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: T(s, a, s'):
 - $P(s'=4 \mid 4, Low) = 1/4$
 - $P(s'=3 \mid 4, Low) = 1/4$
 - $P(s'=2 \mid 4, Low) = 1/2$
 - P(s'=done | 4, Low) = 0
 - $P(s'=4 \mid 4, High) = 1/4$
 - $P(s'=3 \mid 4, High) = 0$
 - $P(s'=2 \mid 4, High) = 0$
 - P(s'=done | 4, High) = 3/4
 - **.** . . .
- Rewards: R(s, a, s'):
 - Number shown on s' if s ≠ s'
 - 0 otherwise
- Start: 3

High-Low: Outcome Tree

MDP Search Trees

Each MDP state gives an expectimax-like search tree

Utilities of Sequences

- What utility does a sequence of rewards have?
- Formally, we generally assume stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

- Theorem: only two ways to define stationary utilities
 - Additive utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Infinite Utilities?!

Problem: infinite state sequences have infinite rewards

- Solutions:
 - Finite horizon:

- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low)
- Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

Discounting

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Recap: Defining MDPs

Markov decision processes:

- States S
- Start state s₀
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)

MDP quantities so far:

- Policy = Choice of action for each state
- Utility (or return) = "expectimax value" of a state

Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s:
 V*(s) = expected utility starting in s and acting optimally
- Define the value of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- Define the optimal policy:
 π *(s) = optimal action from state s

3	0.812	0.868	0.912	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
	1	2	3	4

The Bellman Equations

Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy

Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)
- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

