Recap: MDPs

Markov decision processes:

- States S
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)
- Start state s₀

• Quantities:

- Policy = map of states to actions
- Episode = one run of an MDP
- Utility = sum of discounted rewards
- Values = expected future utility from a state
- Q-Values = expected future utility from a q-state

Utilities of Sequences

- What utility does a sequence of rewards have?
- Formally, we generally assume stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

- Theorem: only two ways to define stationary utilities
 - Additive utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

Infinite Utilities?!

Problem: infinite state sequences have infinite rewards

- Solutions:
 - Finite horizon:

- Gives nonstationary policies (π depends on time left)
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low)
- Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

Discounting

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Why Not Search Trees?

Why not solve with expectimax?

Problems:

- This tree is usually infinite (why?)
- Same states appear over and over (why?)
- We would search once per state (why?)

Idea: Value iteration

- Compute optimal values for all states all at once using successive approximations
- Will be a bottom-up dynamic program similar in cost to memoization
- Do all planning offline, no replanning needed!

Optimal Utilities

The utility of a state s:

V*(s) = expected utility starting in s and acting optimally

The utility of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 π *(s) = optimal action from state s

Bellman Equations

Definition of utility leads to a simple one-step lookahead relationship amongst optimal utility values:

Total optimal rewards = maximize over choice of (first action plus optimal future)

Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Value Estimates

- Calculate estimates V_k*(s)
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - What you'd get with depthk expectimax
 - As $k \to \infty$, it approaches the optimal value
- Almost solution: recursion (i.e. expectimax)
- Correct solution: dynamic programming

Value Iteration

Idea:

- Start with $V_0^*(s) = 0$ for all s, which we know is right (why?)
- Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- Throw out old vector V_i*
- Repeat until convergence
- This is called a value update or Bellman update
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*

Example: $\gamma = 0.9$, living reward=0, noise=0.2

Example: Bellman Updates

Example: Value Iteration

 Information propagates outward from terminal states and eventually all states have correct value estimates

Convergence*

- Define the max-norm: $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem:

$$||U^{t+1} - U^t|| < \epsilon$$
, $\Rightarrow ||U^{t+1} - U|| < 2\epsilon\gamma/(1-\gamma)$

 I.e. once the change in our approximation is small, it must also be close to correct

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values V?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Given optimal q-values Q?

$$\underset{a}{\operatorname{arg\,max}} Q^*(s,a)$$

Lesson: actions are easier to select from Q's!

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π :
 - V^{π} (s) = expected total discounted rewards (return) starting in s and following π

Recursive relation (one-step lookahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the V's for a fixed policy?
- Idea one: turn recursive equations into updates

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Idea two: it's just a linear system, solve with Matlab (or whatever)

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using onestep look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy π , find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Comparison

- Both VI and PI compute the same thing (optimal values for all states)
- In value iteration:
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (implicitly, based on current utilities)
 - Tracking the policy isn't necessary; we take the max $V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$
- In policy iteration:
 - Several passes to update utilities with fixed policy
 - After policy is evaluated, a new policy is chosen
- Both are dynamic programs for solving MDPs

Asynchronous Value Iteration*

- In value iteration, we update every state in each iteration
- Actually, any sequences of Bellman updates will converge if every state is visited infinitely often
- In fact, we can update the policy as seldom or often as we like, and we will still converge
- Idea: Update states whose value we expect to change: If $|V_{i+1}(s)-V_i(s)|$ is large then update predecessors of s