Recap: MDPs

= Markov decision processes:
= States S
Actions A
Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discounty) .
Start state s, o

= Quantities:
= Policy = map of states to actions
= Episode = one run of an MDP
Utility = sum of discounted rewards
Values = expected future utility from a state
Q-Values = expected future utility from a g-state

Utilities of Sequences

= What utility does a sequence of rewards have?

= Formally, we generally assume stationary preferences:
[T7 TO? r].? T27 ° '] >_ [T7 TE)? T{I_J 74/2’ * " ‘]
&
[7"0, r1, T2, ..] ~ [""6: T?]_a TJQ? .]

= Theorem: only two ways to define stationary utilities

= Additive utility:
U([TO7T13T2,-..]) pm— ’T’O‘I—’r‘l —I—fr‘2—|—

= Discounted utility:
U([’l"o,?"l,TQ, ..]) =7rg+r1 + /72712 e

Infinite Utilities?!

= Problem: infinite state sequences have infinite rewards

. | |
Solutions:
. . A =
* Finite horizon: 7
= Terminate episodes after a fixed T steps (e.qg. life) il el el

= Gives nonstationary policies (1t depends on time left)

= Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached (like “done” for High-Low)
= Discounting:forO<y < 1

U([ro,...mo0]) = > ~vtry < Rmax/(1 —7)
t=0

= Smallery means smaller “horizon” — shorter term focus

Discounting

= Typically discount rewards by
y <1 each time step g

= Sooner rewards have higher 1 <
utility than later rewards

= Also helps the algorithms

converge — .
. vo<
= Example: discount of 0.5
= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 =
= U([1,2,3]) < U([3,2,1]) -~

Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
= This tree is usually infinite (why?)
= Same states appear over and over (why?)
= We would search once per state (why?)

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization

= Do all planning offline, no replanning
needed!

Optimal Utilities

= The utility of a state s:
V'(s) = expected utility starting

\ _ _ sisa
In s and acting optimally siate
= The utility of a g-state (s,a):) (s, a) is a
Q’(s,a) = expected utility g-state
starting out having taken o .
action a from state s and (s,8,;5)1s a
~ltransition

(thereafter) acting optimally

= The optimal policy:

T '(S) = optimal action from
state s

Bellman Equations

= Definition of utility leads to a simple
one-step lookahead relationship
amongst optimal utility values:

Total optimal rewards = maximize over
choice of (first action plus optimal future)

= Formally:
V*(s) = max Q*(s,a)

QR*(s,a) => T(s,a, s [R(s, a,s’) + "yV*(S,)]

S

V*i(s) = mgleT(s, a,s') {R(S, a,s’) + ’)/V*(S/)}

Value Estimates

= Calculate estimates V, (s)

= Not the optimal value of s!

* The optimal value
considering only next k
time steps (k rewards)

= What you'd get with depth-
K expectimax

* Ask - oo, it approaches
the optimal value

= Almost solution: recursion
(I.e. expectimax)

= Correct solution: dynamic
programming

Value lteration

" |dea:
= Start with V'(s) = 0 for all s, which we know is right (why?)
Given V/, calculate the values for all states for depth i+1:

Vit1(s) «— mEXZT(s, a,s’) {R(s,a, s + q/Vi(s’)}

S

Throw out old vector V;

Repeat until convergence
This is called a value update or Bellman update

= Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Grid World

The agent lives in a grid

Walls block the agent’s path

The agent’s actions do not always
go as planned:

" 80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

" If there is a wall in the direction the
agent would have been taken, the
agent stays put

Small “living” reward each step
Big rewards come at the end
Goal: maximize sum of rewards”

3

+ 1

START

Example: y =0.9,
living reward=0,
oise=0.2

Example: Bellman Updates

s 0O | O p GHED| 2 0 | O |0.72]| &

Vig1(s) = mngT(s,a, s {R(s,a, s + ’yVi(s’)}

S

12((3,3)) = > T((3,3),right, s') | R((3,3)) + 0.9 V1(s)]

S
max happens for

a=right, other =0.9[0.8-14+0.1-040.1-0]

actions not shown
11

Example: Value lteration

+ 1

+ 1

* |nformation propagates outward from terminal
states and eventually all states have correct

value estimates

12

Convergence”®

= Define the max-norm: ||[U|| = maxs |[U(s))|

* Theorem: For any two approximations U and V
UM — VI <y Ut =V

= |.e. any distinct approximations must get closer to each other,
S0, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal

solution
= Theorem:

|UtTL — U] <€, = |JUTL - U]l < 2ev/(1 —7)

= |.e. once the change in our approximation is small, it must also
be close to correct

13

Practice: Computing Actions

= Which action should we chose from state s:
= Given optimal values V?

arg max Z T(s,a,s)[R(s,a,s) +~1V*(s)]

S

= Given optimal g-values Q?

arg maxQ*(s,a)
a

= | esson; actions are easier to select from Q’s!

14

Utilities for a Fixed Policy

= Another basic operation: compute
the utility of a state s under a fixed
(generally non-optimal) policy

= Define the utility of a state s, under
a fixed policy 1t :
VT (s) = expected total discounted

rewards (return) starting in s and
following Tt

= Recursive relation (one-step look-
ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]

15

Policy Evaluation

= How do we calculate the V's for a fixed policy?

= |dea one: turn recursive equations into updates
Vo'(s) =0

Vi a(s) < > T(s,m(s),s)[R(s,m(s),s") + V" (s)]

= |dea two: it's just a linear system, solve with
Matlab (or whatever)

16

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some
fixed policy (not optimal utilities!) until convergence

= Step 2: Policy improvement: update policy using one-
step look-ahead with resulting converged (but not
optimal!) utilities as future values

* Repeat steps until policy converges

= This is policy iteration
= |t's still optimal!
= Can converge faster under some conditions

17

Policy Iteration

= Policy evaluation: with fixed current policy 1t , find values
with simplified Bellman updates:
= |terate until values converge

Vi (8) > T(s,m(s),s) [R(Saﬂk(s)a s') + ,szf”k(s’)}

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

mp+1(s8) = arg maXZT(s, a,s) [R(s, a,s) + 'yVﬂk(s’)}

S

18

Comparison

Both VI and Pl compute the same thing (optimal values for all
states)
In value iteration:
= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (implicitly, based on current
utilities)
= Tracking the policy isn't necessary; we take the max
Vig1(s) < max Z T(s,a,5) |R(s,a,s") + v V;(s)]

In policy iteration:
= Several passes to update utilities with fixed policy
= After policy is evaluated, a new policy is chosen

Both are dynamic programs for solving MDPs

19

Asynchronous Value lteration™

* |n value iteration, we update every state in each iteration

= Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

* |n fact, we can update the policy as seldom or often as
we like, and we will still converge

* |dea: Update states whose value we expect to change:
|f [Via(8)=Vi(5)] IS large then update predecessors of s

	Recap: MDPs
	Utilities of Sequences
	Infinite Utilities?!
	Discounting
	Why Not Search Trees?
	Slide 6
	Bellman Equations
	Value Estimates
	Value Iteration
	Grid World
	Example: Bellman Updates
	Example: Value Iteration
	Convergence*
	Practice: Computing Actions
	Utilities for a Fixed Policy
	Policy Evaluation
	Policy Iteration
	Slide 18
	Comparison
	Asynchronous Value Iteration*

