Reinforcement Learning

* Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards

action

state
: a,

This slide deck courtesy of Dan Klein at UC Berkeley

Reinforcement Learning

= Reinforcement learning:
= Still assume an MDP:

= Asetofstatess 0S g
= A set of actions (per state) A /

= A model T(s,a,s)
= A reward function R(s,a,s’) [DEMQO]

= Still looking for a policy 1t (s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Example: Animal Learning

= RL studied experimentally for more than 60
years in psychology
= Rewards: food, pain, hunger, drugs, etc.
* Mechanisms and sophistication debated

= Example: foraging
= Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

» Bees have a direct neural connection from nectar
iIntake measurement to motor planning area

Example: Backgammon

Reward only for win / loss in
termlne}l states, zero
otherwise

TD-Gammon learns a function
approximation to V(s) using a
neural network

Combined with depth 3
search, one of the top 3
players in the world

0 12 3 4 5 &6 7 8 9 101112
VN, TN N NN

25 24 23 22 21 20 19 18 17 16 15 14 13

You could imagine training
Pacman this way...

... but it’s tricky! (It's also P3)

Passive RL

!

= Simplified task

= You are given a policy 1t (s)

B

= You don’t know the transitions T(s,a,s’) |-

* You don’t know the rewards R(s,a,s’) T 2
» (Goal: learn the state values
= ... what policy evaluation did

" |n this case:
= |earner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon

= This is NOT offline planning! You actually take actions in the
world and see what happens...

Example: Direct Evaluation

y

" Episodes: 3| = | = | — |[|+100
1,1) up -1 1,1) up -1
e e 2 |} b ||-100
(1,2) up -1 (1,2) up -1
(1 52) up -1 (1 53) I’ight 1 1 1 e - -
(1,3) right -1 (2,3) right -1

. . 1 2 3 4

(2,3) right -1 (3,3) right -1
(3,3) right -1 (3,2) up -1 v =1,R=-1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done)
(4,3) exit +100 V(2,3) ~ (96 +-103) /2 =-3.5
(done) V(3,3) ~ (99 + 97 + -102) /3 = 31.3

Recap: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look-
ahead using current V

= Unfortunately, need T and R

Voi(s) =0

1(s) = > T(s,m(s), s)R(s,7(s),8") + V()]

Model-Based Learning

= |dea:
= | earn the model empirically through experience
= Solve for values as if the learned model were correct

= Simple empirical model learning
= Count outcomes for each s,a
* Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) when we experience (s,a,s’)

= Solving the MDP with the learned model
= |terative policy evaluation, for example

1(8) > T(s,m(s), s)R(s,7(s),8") + 7V (s)]

Example: Model-Based Learning

y
= Episodes: 3| = | = | = ||+100
1,1) up -1 1,1) up -1
o e 2 | b ||-100
(1,2) up -1 (1,2) up -1
(1 52) up -1 (1 53) I’ight 1 1 1 e i o
(1,3) right -1 (2,3) right -1
. . 1 2 3 4
(2,3) right -1 (3,3) right -1
= 1
(3,3) right -1 (3,2) up -1 Y
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>) =1/3
(4,3) exit +100 T(<2,3>, right, <3,3>)=2/2
(done)

Example: Expected Age

Goal: Compute expected age of cs343 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

Unknown P(A): “Model Based”

Unknown P(A): “Model Free”

num (a)

EA] ~ %Zai

Zﬁ(a)-a '

10

Model-Free Learning

= Want to compute an expectation weighted by P(x):
Elf(z)] = >, P(x)f(z)

* Model-based: estimate P(x) from samples, compute expectation

P(z) = num(z)/N x

* Model-free: estimate expectation directly from samples

x; ~ P(x) Elf(z)] = 5 2 f(2:)

= Why does this work? Because samples appear with the right
frequencies!

11

Sample-Based Policy Evaluation?

VA 1(8) > T(s,m(s),s)[R(s,m(s),s") + V" (s)]

= Who needs T and R? Approximate the
expectation with samples of s’ (drawn from T!)

L AR (! 7 \N
sample; = R(s,m(s),s7) +~vV;" (s7) S, TEA5),5\

sampley = R(s,m(s),sh) + 7V (sh) ~ A,

sampler, = R(s,m(s), S;q) + ’YV@W(S;/’@)

Almost! But we can’t rewind
fime to get sample after
sample from state s.

1
in1(8) « ; Z sample;
()

12

Temporal-Difference Learning

= Big idea: learn from every experience!
= Update V(s) each time we experience (s,a,s’,r)

= Likely s’ will contribute updates more often T (S)

S,
= Temporal difference learning T (S)
= Policy still fixed! A s

= Move values toward value of whatever
successor occurs: running average!

Sample of V(s): sample = R(s,n(s), SI) + ’YVW(S/)
Update to V(s): VT(s) «— (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) «— V" (s) + a(sample — V" (s))

13

Exponential Moving Average

= Exponential moving average
* The running interpolation update

Ty = (1 — Of) +Tp—1 Tt Q- Ty
* Makes recent samples more important

T,+(1—a) o 1+(1—a) zp_o+...
1+(1-ao)+(1—a)?+...

Lpn =

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate can give converging averages

14

Example: TD Policy Evaluation

VT(s) — (1= a)V7™(s) 4+ o |R(s,7(s),s") +V7(s)

1,1) up -1 (1,1) up -1 S I N
1,2) up -1 (1,2) up -1 , e
1,2) up -1 (1,3) right -1 0 [T [P [y
1,3) right -1 (2,3) right -1

2,3) right -1 (3,3) right -1 3

3,3) right -1 (3,2) up -1

3,2) up -1 (4,2) exit -100 2

3,3) right -1 (done)

4,3) exit +100 1

done) Takey =1,a =

1 2 3 4
0.5 5

Problems with TD Value Learning

TD value leaning is a model-free way
to do policy evaluation

However, if we want to turn values into +~
a (new) policy, we're sunk:

w(s) = argmaxQ*(s,a)

Q*(s,a) = ZT(S, a,s') [R(S, a,s') + WV*(S,)]

ldea: learn Q-values directly
Makes action selection model-free too!

16

Active RL

!

= Full reinforcement learning
* You don’t know the transitions T(s,a,s’)

B

= You don’t know the rewards R(s,a,s’) N

* You can choose any actions you like 12
= Goal: learn the optimal policy / values
= ... what value iteration did!

* |n this case:
= |earner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

17

Detour: Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,'(s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vig1(s) — max Y T(s,a,s") |R(s,a,5) + 7 Vi(s)]

= But Q-values are more useful!
= Start with Q,’(s,a) = 0, which we know is right (why?)
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qit1(s,a) = S T(s,a,8) |R(s,a,8) +7 maxQi(s',a)

a

18

[DEMO — Grid Q’s]

Q-Learning

» Q-Learning: sample-based Q-value iteration

= Learn Q*(s,a) values
= Receive a sample (s,a,s’,r)
= Consider your old estimate: @(s;a)
= Consider your new sample estimate:

sample = R(s,a,s’) + max Q(s',a")
a

* |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

19

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
= |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
= Basically doesn’t matter how you select actions (!)

= Neat property: off-policy learning
= |earn optimal policy without following it (some caveats)

m

S iE S

20

Exploration / Exploitation

= Several schemes for forcing exploration

» Simplest: random actions (¢ greedy)
= Every time step, flip a coin
= With probability € , act randomly

= With probability 1-¢ , act according to current
policy

= Problems with random actions?

* You do explore the space, but keep thrashing
around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

21

Q-Learning

= Q-learning produces tables of g-values:

0]
X

Exploration Functions

= When to explore
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not (yet)
established

= Exploration function

= Takes a value estimate and a count, and returns an optimistic
utility, e.g. flu,n) =u+Fk/n (exact form not important)

Qi+1(s,a) «a R(s,a,5) + 7~ max Q;(s',a")

Qit1(5:0) —a R(s,a,5) + 7 max f(Qi(s',a), N(s',a)

23

The Story So Far: MDPs and RL
Things we know how to do: Techniques:
* |f we know the MDP " Model-based DPs
= Compute V*, Q*, 1t * exactly " Value lteration
= Evaluate a fixed policy 1t " Policy evaluation

= |f we don’t know the MDP
= We can estimate the MDP then solve ® Model-based RL

= We can estimate V for a fixed policy 1 4 Model-free RL

= We can estimate Q*(s,a) for the
optimal policy while executing an
exploration policy

" Value learning
" Q-learning

24

	Slide 1
	Slide 2
	Example: Animal Learning
	Example: Backgammon
	Passive RL
	Example: Direct Evaluation
	Slide 7
	Slide 8
	Slide 9
	Example: Expected Age
	Model-Free Learning
	Slide 12
	Slide 13
	Exponential Moving Average
	Slide 15
	Slide 16
	Active RL
	Detour: Q-Value Iteration
	Q-Learning
	Q-Learning Properties
	Exploration / Exploitation
	Slide 22
	Exploration Functions
	The Story So Far: MDPs and RL

