Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards

This slide deck courtesy of Dan Klein at UC Berkeley
Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s, a, s')$
 - A reward function $R(s, a, s')$
 - Still looking for a policy $\pi(s)$

- New twist: *don’t know* T or R
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area
Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $V(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

- You could imagine training Pacman this way…
- … but it’s tricky! (It’s also P3)
Passive RL

- **Simplified task**
 - You are given a policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values
 - … what policy evaluation did

- **In this case:**
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens…
Example: Direct Evaluation

- **Episodes:**

 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,2) up -1
 - (4,2) exit -100
 - (3,3) right -1
 - (3,3) right -1
 - (done)
 - (4,3) exit +100
 - (done)

 - $V(2,3) \sim \frac{96 + (-103)}{2} = -3.5$
 - $V(3,3) \sim \frac{99 + 97 + (-102)}{3} = 31.3$
Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[
V^\pi_0(s) = 0
\]

\[
V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi_i(s')]
\]
Model-Based Learning

- **Idea:**
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- **Simple empirical model learning**
 - Count outcomes for each \(s, a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) when we experience \((s,a,s') \)

- **Solving the MDP with the learned model**
 - Iterative policy evaluation, for example

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\]
Example: Model-Based Learning

- **Episodes:**

 (1,1) up -1 (1,1) up -1
 (1,2) up -1 (1,2) up -1
 (1,2) up -1 (1,3) right -1
 (1,3) right -1 (2,3) right -1
 (2,3) right -1 (3,3) right -1
 (3,3) right -1 (3,2) up -1
 (3,2) up -1 (4,2) exit -100
 (3,3) right -1 (done)
 (4,3) exit +100 (done)

\[T(<3,3>, \text{right}, <4,3>) = \frac{1}{3} \]

\[T(<2,3>, \text{right}, <3,3>) = \frac{2}{2} \]
Example: Expected Age

Goal: Compute expected age of cs343 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots]</td>
</tr>
</tbody>
</table>

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

<table>
<thead>
<tr>
<th>Unknown P(A): “Model Based”</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\hat{P}(a) = \frac{\text{num}(a)}{N}]</td>
</tr>
<tr>
<td>[E[A] \approx \sum_a \hat{P}(a) \cdot a]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown P(A): “Model Free”</th>
</tr>
</thead>
<tbody>
<tr>
<td>[E[A] \approx \frac{1}{N} \sum_i a_i]</td>
</tr>
</tbody>
</table>
Model-Free Learning

- Want to compute an expectation weighted by $P(x)$:

$$E[f(x)] = \sum_x P(x) f(x)$$

- Model-based: estimate $P(x)$ from samples, compute expectation

$$x_i \sim P(x)$$

$$\hat{P}(x) = \text{num}(x) / N$$

$$E[f(x)] \approx \sum_x \hat{P}(x) f(x)$$

- Model-free: estimate expectation directly from samples

$$x_i \sim P(x)$$

$$E[f(x)] \approx \frac{1}{N} \sum_i f(x_i)$$

- Why does this work? Because samples appear with the right frequencies!
Sample-Based Policy Evaluation?

$$V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]$$

- Who needs T and R? Approximate the expectation with samples of s' (drawn from T!)

$$\begin{align*}
\text{sample}_1 &= R(s, \pi(s), s'_1) + \gamma V_i^\pi(s'_1) \\
\text{sample}_2 &= R(s, \pi(s), s'_2) + \gamma V_i^\pi(s'_2) \\
&\vdots \\
\text{sample}_k &= R(s, \pi(s), s'_k) + \gamma V_i^\pi(s'_k) \\
\end{align*}$$

$$V_{i+1}^\pi(s) \leftarrow \frac{1}{k} \sum_i \text{sample}_i$$

Almost! But we can't rewind time to get sample after sample from state s.
Tempor​al-Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of $V(s)$:

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$
Exponential Moving Average

- Exponential moving average
 - The running interpolation update
 \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate can give converging averages
Example: TD Policy Evaluation

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(1,3) right -1
(2,3) right -1
(2,3) right -1
(3,3) right -1
(3,3) right -1
(3,2) up -1
(3,2) up -1
(4,2) exit -100
(4,3) exit +100
(done)

Take \(\gamma = 1 \), \(\alpha = 0.5 \)
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

- Idea: learn Q-values directly.
- Makes action selection model-free too!
Active RL

- Full reinforcement learning
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You can choose any actions you like
 - Goal: learn the optimal policy / values
 - … what value iteration did!

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Detour: Q-Value Iteration

- **Value iteration**: find successive approx optimal values
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
 \]

- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$, which we know is right (why?)
 - Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:
 \[
 Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 $$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$
 $$sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$$
 - Incorporate the new estimate into a running average:
 $$Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + (\alpha) \left[sample \right]$$
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - … but not decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)

- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)
Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability $1-\varepsilon$, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Q-Learning

- Q-learning produces tables of q-values:

![Q-Values after 1000 episodes](image)
Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$
 (exact form not important)

$$Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_i(s', a')$$

$$Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))$$
The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V^*, Q^*, π^* exactly
 - Evaluate a fixed policy π

- If we don’t know the MDP
 - We can estimate the MDP then solve
 - We can estimate V for a fixed policy π
 - We can estimate $Q^*(s,a)$ for the optimal policy while executing an exploration policy

Techniques:

- Model-based DPs
 - Value Iteration
 - Policy evaluation

- Model-based RL
- Model-free RL
 - Value learning
 - Q-learning