The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V*, Q*, π * exactly
 - Evaluate a fixed policy π
- If we don't know the MDP
 - We can estimate the MDP then solve
 - We can estimate V for a fixed policy π
 - We can estimate Q*(s,a) for the optimal policy while executing an exploration policy

Techniques:

- Model-based DPs
 - Value Iteration
 - Policy evaluation

- Model-based RL
- Model-free RL
 - Value learning
 - Q-learning

This slide deck courtesy of Dan Klein at UC Berkeley

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') \right]$$

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε , act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Q-Learning

• Q-learning produces tables of q-values:

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q learning, we know nothing about this state or its q states:

Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

$$Q(s, a) \leftarrow Q(s, a) + \alpha [error]$$

 $w_i \leftarrow w_i + \alpha [error] f_i(s, a)$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s, \text{NORTH}) = 0.5$$

$$f_{GST}(s, \text{NORTH}) = 1.0$$

$$Q(s,a) = +1$$

$$R(s,a,s') = -500$$

$$error = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] \ 0.5$$

$$w_{GST} \leftarrow -1.0 + \alpha [-501] \ 1.0$$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Linear regression

Given examples $(x_i, y_i)_{i=1...n}$ Predict y_{n+1} given a new point x_{n+1}

Linear regression

Prediction
$$\hat{y}_i = w_0 + w_1 x_i$$

Prediction

$$\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2}$$

Ordinary Least Squares (OLS)

Minimizing Error

$$E(w) = \frac{1}{2} \sum_{i} \left(\sum_{k} f_{k}(x_{i}) w_{k} - y_{i} \right)^{2}$$

$$\frac{\partial E}{\partial w_{m}} = \sum_{i} \left(\sum_{k} f_{k}(x_{i}) w_{k} - y_{i} \right) f_{m}(x_{i})$$

$$E \leftarrow E + \alpha \sum_{i} \left(\sum_{k} f_{k}(x_{i}) w_{k} - y_{i} \right) f_{m}(x_{i})$$

Value update explained:

$$w_i \leftarrow w_i + \alpha [error] f_i(s, a)$$

Policy Search

Policy Search

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Policy Search

Simplest policy search:

- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:

$$\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}$$

- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, but you don't have to know them)
- Take uphill steps, recalculate derivatives, etc.

Take a Deep Breath...

We're done with search and MDPs!

- Next, we'll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - ... lots more!
- Last part of course: machine learning, classical planning

A (Short) History of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence"
- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early Al programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970—88: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms
 - 1988—93: Expert systems industry busts: "Al Winter"
- 1988—: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2000—: Where are we now?